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AN UNPUBLISHED QUANTITATIVE RESEARCH METHODS BOOK 
 
I have put together in this book a number of slightly-revised unpublished papers I 
wrote during the last several years.  Some were submitted for possible 
publication and were rejected.  Most were never submitted.  They range in length 
from 2 pages to 37 pages, and in complexity from easy to fairly technical.  The 
papers are included in an order in which I think the topics should be presented 
(design first, then instrumentation, then analysis), although I later added a few 
papers that are in no particular order.  You might find some things repeated two 
or three times.  I wrote the papers at different times; the repetition was not 
intentional.  There's something in here for everybody.  Feel free to download 
anything you find to be of interest.  Enjoy! 
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CHAPTER 1: HOW MANY KINDS OF QUANTITATIVE RESEARCH STUDIES 
ARE THERE?  
 
You wouldn't believe how many different ways authors of quantitative research 
methods books and articles "divide the pie" into various approaches to the 
advancement of scientific knowledge.  In what follows I would like to present my 
own personal taxonomy, while at the same time pointing out some other ways of 
classifying research studies. I will also make a few comments regarding some 
ethical problems with certain types of research. 
 
Experiments, surveys, and correlational studies 
 
That's it (in my opinion).  Three basic types, with a few sub-types. 
 
1.  Experiments 
 
If causality is of concern, there is no better way to try to get at it than to carry out 
an experiment.  But the experiment should be a "true" experiment (called a 
randomized clinical trial, or randomized controlled trial, in the health sciences), 
with random assignment to the various treatment conditions.  Random 
assignment provides the best and simplest control of possibly confounding 
variables that could affect the dependent (outcome) variable instead of, or in 
addition to, the independent ("manipulated") variable of primary interest. 
 
Experiments are often not generalizable, for two reasons: (1) they are usually 
carried out on "convenience" non-random samples; and (2) control is usually 
regarded as more important in experiments than generalizability, since causality 
is their ultimate goal.  Generalizability can be obtained by replication. 
 
Small but carefully designed experiments are within the resources of individual 
investigators.  Large experiments involving a large number of sites require large 
research grants.  
 
An experiment in which some people would be randomly assigned to smoke 
cigarettes and others would be randomly assigned to not smoke cigarettes is 
patently unethical.  Fortunately, such a study has never been carried out (as far 
as I know).   
 
2.  Surveys 
 
Control is almost never of interest in survey research.  An entire population or a 
sample (hopefully random) of a population is contacted and the members of that 
population or sample are asked questions, usually via questionnaires, to which 
the researcher would like answers. 
 
Surveys based upon probability samples (usually multi-stage) are the most 
generalizable of the three types.  If the survey research is carried out on an 
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entire well-defined population, better yet; but no generalizability beyond that 
particular population is warranted. 
 
Surveys are rarely regarded as unethical, because potential respondents are 
free to refuse to participate wholly (e.g., by throwing away the questionnaire) or 
partially (by omitting some of the questions). 
 
3.  Correlational studies 
 
Correlational studies come in various sizes and shapes.  (N.B.:  The word 
"correlational" applies to the type of research, not to the type of analysis, e.g.,  
the use of correlation coefficients such as the Pearson product-moment 
measure.  Correlation coefficients can be as important in experimental research 
as in non-experimental research for analyzing the data.)  Some of the sub-types 
of correlational research are: (1) measurement studies in which the reliability 
and/or validity of measuring instruments are assessed; (2) predictive studies in 
which the relationship between one or more independent (predictor) variables 
and one or more dependent (criterion) variables are explored; and (3) theoretical 
studies that try to determine the "underlying" dimensions of a set of variables.  
This third sub-type includes factor analysis (both exploratory and confirmatory) 
and structural equation modeling (the analysis of covariance structures). 
 
The generalizability of a correlational research study depends upon the method  
of sampling the units of analysis (usually individual people) and the properties of 
the measurements employed. 
 
Correlational studies are likely to be more subject to ethical violations than either 
experiments or surveys, because they are often based upon existing records, the 
access to which might not have the participants' explicit consents.  (But I don't 
think that a study of a set of anonymous heights and weights for a large sample 
of males and females would be regarded as unethical; do you?) 
 
Combination studies 
 
The terms "experiment", "survey", and "correlational study" are not mutually 
exclusive.  For example, a study in which people are randomly assigned to 
different questionnaire formats could be considered to be both an experiment 
and a survey.  But that might better come under the heading of "methodological 
research" (research on the tools of research) as opposed to "substantive 
research" (research designed to study matters such as the effect of teaching 
method on pupil achievement or the effect of drug dosage on pain relief). 
 
Pilot studies 
 
Experiments, surveys, or correlational studies are often preceded by feasibility 
studies whose purpose is to "get the bugs out" before the main studies are  
undertaken.  Such studies are called "pilot studies", although some researchers 
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use that term to refer to small studies for which larger studies are not even 
contemplated.  Whether or not the substantive findings of a pilot study should be 
published is a matter of considerable controversy. 
 
Two other taxonomies 
 
Epidemiology 
 
In epidemiology the principal distinction is made between experimental studies 
and "observational" studies.  The basis of the distinction is that experimental 
studies involve the active manipulation (researcher intervention) of the 
independent variable(s) whereas observational studies do not.  An observational 
epidemiological study usually does not involve any actual visualization of 
participants (as the word implies in ordinary parlance), whereas a study in 
psychology or the other social sciences occasionally does (see next section).  
There are many sub-types of epidemiological research, e.g., analytic(al) vs. 
descriptive, and cohort vs. case-control. 
 
Psychology 
 
In social science disciplines such as psychology, sociology, and education, the 
preferred taxonomies are similar to mine, but with correlational studies usually 
sub-divided into cross-sectional vs. longitudinal, and with the addition of 
quantitative case studies of individual people or groups of people (where 
observation in the visual sense of the word might be employed).   
 
Laboratory animals 
 
Much research in medicine and in psychology is carried out on infrahuman 
animals rather than human beings, for a variety of reasons; for example: (1) 
using mice, monkeys, dogs, etc. is generally regarded as less unethical than 
using people; (2) certain diseases such as cancer develop more rapidly in some 
animal species and the benefits of animal studies can be realized sooner; and 
(3) informed consent of the animal itself is not required (nor can be obtained).  
The necessity for animal research is highly controversial, however, with strong 
and passionate arguments on both sides of the controversy. 
 
Interestingly, there have been several attempts to determine which animals are 
most appropriate for studying which diseases. 
 
Efficacy vs. effectiveness 
 
Although I personally never use the term "efficacy", in the health sciences the 
distinction is made between studies that are carried out in ideal environments 
and those carried out in more practical "real world" environments.  The former 
are usually referred to as being concerned with efficacy and the latter with 
effectiveness. 
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Quantitative vs. qualitative research 
 
"Quantitative" is a cover term for studies such as the kinds referred to above.  
"Qualitative" is also a cover term that encompasses ethnographic studies, 
phenomenonological studies, and related kinds of research having similar 
philosophical bases to one another. 
 
 
References 
 
Rather than provide references to books, articles, etc. in the usual way, I would 
like to close this chapter with a brief annotated list of websites that contain 
discussions of various kinds of quantitative research studies. 
 
1.  Wikipedia 
 
Although Wikipedia websites are sometimes held in disdain by academics, and 
as "works in progress" have associated comments requesting editing and the 
provision of additional references, some of them are very good indeed.  One of 
my favorites is a website originating at the PJ Nyanjui Kenya Institute of 
Education.  It has an introduction to research section that includes a discussion 
of various types of research, with an emphasis on educational research. 
 
2.  Medical Research With Animals 
 
The title of the website is an apt description of its contents.  Included are 
discussions regarding which animals are used for research concerning which 
diseases, who carries out such research, and why they do it.  Nice. 
 
3.  Cancer Information and Support Network 
 
The most interesting features on this website (to me, anyhow) are a diagram 
showing the various kinds of epidemiological studies and short descriptions of 
each kind. 
 
4.  Psychology.About.Com 
 
Seven articles regarding various types of psychological studies are featured at 
this website.  Those types are experiments, correlational studies, longitudinal 
research, cross-sectional research, surveys, and case studies; and an article 
about within-subjects experimental designs, where each participant serves as 
his(her) own control.  
 
5.  The Nutrition Source 
 
This website is maintained by the T.H. Chan School of Public Health at Harvard 
University.  One of its sections is entitled "Research Study Types" in public 
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health, and it includes excellent descriptions of laboratory and animal studies, 
case-control studies, cohort studies, and randomized trials.  
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CHAPTER 2: SHOULD WE GIVE UP ON CAUSALITY?    
 
Introduction 
 
Researcher A randomly assigns forty members of a convenience sample of 
hospitalized patients to one of five different daily doses of aspirin (eight patients 
per dose), determines the length of hospital stay for each person, and carries out 
a test of the significance of the difference among the five mean stays. 
Researcher B has access to hospital records for a random sample of forty 

patients, determines the daily dose of aspirin given to, and the length of hospital 
stay for, each person, and calculates the correlation (Pearson product-moment) 

between dose of aspirin and length of stay. Researcher A's study has a stronger 
basis for causality ("internal validity"). Researcher B's study has a stronger basis 

for generalizability ("external validity"). Which of the two studies contributes more 

to the advancement of knowledge? 
 
Oh; do you need to see the data before you answer the question? The raw data 

are the same for both studies. Here they are: 
 

ID Dose(in mg) LOS(in days) ID Dose(in mg) LOS(in days) 

1 75 5 21 175 25 
2 75 10 22 175 25 
3 75 10 23 175 25 
4 75 10 24 175 30 
5 75 15 25 225 20 
6 75 15 26 225 25 
7 75 15 27 225 25 
8 75 20 28 225 25 
9 125 10 29 225 30 
10 125 15 30 225 30 
11 125 15 31 225 30 
12 125 15 32 225 35 
13 125 20 33 275 25 
14 125 20 34 275 30 
15 125 20 35 275 30 
16 125 25 36 275 30 
17 175 15 37 275 35 
18 175 20 38 275 35 
19 175 20 39 275 35 

20 175 20 40 275 40 
 
 
 
 
 
 



 9 

And here are the results for the two analyses (courtesy of Excel and Minitab).  
Donôt worry if you canôt follow all of the technical matters: 
 

        

        

 SUMMARY      

 Groups Count Sum Mean Variance   

  75 mg 8 100 12.5 21.43   

 125 mg 8 140 17.5 21.43   

 175 mg 8 180 22.5 21.43   

 225 mg 8 220 27.5 21.43   

 275 mg 8 260 32.5 21.43   

        

        

 ANOVA       

 
Source of 
Variation SS df MS F   

 
Between 
Groups 2000 4 500 23.33   

 
Within 
Groups 750 35 21.43    

        

 Total 2750 39         
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Correlation of dose and los = 0.853 
 
The regression equation is: 

los = 5.00 + 0.10 dose 
 

Predictor Coef 
Standard 

error t-ratio 
Constant 5.00 1.88 2.67 

dose 0.10 0.0099 10.07 
 

s = 4.44  R-sq = 72.7% R-sq(adj) = 72.0% 

Analysis of Variance  

SOURCE DF SS MS 
Regression 1 2000 2000.0 
Error 38 750 19.7 

Total 39 2750  
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The results are virtually identical. (For those of you familiar with "the general 
linear model" that is not surprising.) There is only that tricky difference in the df's 
associated with the fact that dose is discrete in the ANOVA (its magnitude never 
even enters the analysis) and continuous in the correlation and regression 
analyses. 
 
But what about the assumptions? 
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Here is the over-all frequency distribution for LOS: 
Midpoint Count 

5 1 * 
10 4 **** 
15 7 ******* 
20 8 ******** 
25 8 ******** 
30 7 ******* 
35 4 **** 
40 1 * 

Looks pretty normal to me. 
 
And here is the LOS frequency distribution for each of the five treatment groups: 
(This is relevant for homogeneity of variance in the ANOVA and for 
homoscedasticity in the regression.) 
 
 
Histogram of los treat = 75 N = 8  
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Histogram of los treat =175  
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Those distributions are as normal as they can be for eight observations per 

treatment condition. (They're actually the binomial coefficients for n = 3.) 
 
So what? 
 
The "So what?" is that the statistical conclusion is essentially the same for the 
two studies; i.e., there is a strong linear association between dose and stay. The 
regression equation for Researcher B's study can be used to predict stay from 
dose quite well for the population from which his (her) sample was randomly 
drawn. You're only likely to be off by 5-10 days in length of stay, since the 
standard error of estimate, s, = 4.44. Why do we need the causal interpretation 
provided by Researcher A's study? Isn't the greater generalizability of 
Researcher B's study more important than whether or not the "effect" of dose on 

stay is causal for the non-random sample? 
 
You're probably thinking "Yeah; big deal, for this one example of artificial data." 
Of course the data are artificial (for illustrative purposes). Real data are never 

that clean, but they could be. 
 
Read on. 
 
What do other people have to say about causation, correlation, and prediction? 
 
The sources cited most often for distinctions among causation (I use the terms 
"causality" and "causation" interchangeably), correlation, and prediction are 

usually classics written by philosophers such as Mill (1884) and Popper (1959); 
textbook authors such as Pearl (2000); and journal articles such as Bradford Hill 
(1965) and Holland (1986). I would like to cite a few other lesser known people 

who have had something to say for or against the position I have just taken. I 
happily exclude those who say only that "correlation is not causation" and who let 

it go at that. 
 
Schield (1995): 
 
Milo Schield is very big on emphasizing the matter of causation in the teaching 

of statistics. Although he included in his conference presentation the mantra 
"correlation is not causality", he carefully points out that students might 

mistakenly think that correlation can never be causal. He goes on to argue for 

the need to make other important distinctions among causality, explanation, 
determination, prediction, and other terms that are often confused with one 

another. Nice piece. 
 
Frakt (2009): 
 
In an unusual twist, Austin Frakt argues that you can have causation without 

correlation. (The usual minimum three criteria for a claim that X causes Y are 
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strong correlation, temporal precedence, and non-spuriousness.) He gives an 

example for which the true relationship between X and Y is mediated by a 

third variable W, where the correlation between X and Y is equal to zero. 
 
White (2010): 
 
John Myles White decries the endless repetiton of "correlation is not causation". 
He argues that most of our knowledge is correlational knowledge; causal 

knowledge is only necessary when we want to control things; causation is a 

slippery concept; and correlation and causation go hand-in-hand more often than 

some people think. His take-home message is that it's much better to know X 

and Y are related than it is to know nothing at all. 
 
Anonymous (2012): 
 
Anonymous starts out his (her) two-part article with this: "The ultimate goal of 

social science is causal explanation. The actual goal of most academic research 

is to discover significant relationships between variables." Ouch! But true? He 

(she) contends that we can detect a statistically significant effect of X on Y but 

still not know why and when Y occurs. 
 
That looks like three (Schield, Frakt, and Anonymous) against two (White and 
me), so I lose? Perhaps. How about a compromise? In the spirit of White's 
distinction between correlational knowledge and causal knowledge, can we 
agree that we should concentrate our research efforts on two non-overlapping 
strategies: true experiments (randomized clinical trials) carried out on admittedly 
handy non-random samples, with replications wherever possible; and non-
experimental correlational studies carried out on random samples, also with 
replications? 
 
A closing note 
 
What about the effect of smoking (firsthand, secondhand, thirdhand...whatever) 

on lung cancer? Would you believe that we might have to give up on causality 

there? There are problems regarding the difficulty of establishing a causal 

connection between the two even for firsthand smoking. You can look it up (in 

Spirtes, Glymour, & Scheines, 2000, pp.239-240). You might also want to read 

the commentary by Lyketsos and Chisolm (2009), the letter by Luchins (2009) 

regarding that commentary, and the reply by Lyketsos and Chisolm (2009) 

concerning why it is sometimes not reported that smoking was responsible for 

the death of a smoker who had lung cancer, whereas stress as a cause for 

suicide almost always is. 
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CHAPTER 3:  SHOULD WE GIVE UP ON EXPERIMENTS? 
 
In the previous chapter I presented several arguments pro and con the giving up 
on causality.  In this sequel I would like to extend the considerations to the 
broader matter of giving up on true experiments (randomized controlled trials) in 
general.  I will touch on ten arguments for doing so.  But first... 
 
What is an experiment? 

Although different researchers use the term in different ways (e.g., some equate 
"experimental" with "empirical" and some others equate an "experiment" with a 
"demonstration"), the most common definition of an experiment is a type of study 
in which the researcher "manipulates" the independent variable(s) in order to 
determine its(their) effect(s) on one or more dependent variables (often called 
"outcome" variables).  That is, the researcher assigns the "units" (usually people)  
to the various categories of the independent variable(s).  [The most common 
categories are "experimental" and "control".]  This is the sense in which the term 
will be used throughout the present chapter.  

What is a "true" experiment?   

A true experiment is one in which the units are randomly assigned by the 
researcher to the categories of the independent variable(s). The most popular 
type of true experiment is a randomized clinical trial. 

What are some of the arguments against experiments? 

1.  They are artificial. 

Experiments are necessarily artificial.  Human beings don't live their lives by 
being assigned (whether randomly or not) to one kind of "treatment" or another.  
They might choose to take this pill or that pill, for example, but they usually don't 
want somebody else to make the choice for them. 

2.   They have to be "blinded" (either single or double); i.e., the participants must 
not know which treatment they're getting and/or the experimenters must not know 
which treatment each participant is getting.  If it's "or", the blinding is single; if it's 
"and", the blinding is double.  Both types of blinding are very difficult to carry out. 

3.  Experimenters must be well-trained to carry out their duties in the 
implementation of the experiments.  That is irrelevant when the subjects make 
their own choices of treatments (or choose no treatment at all). 

4.   The researcher needs to make the choice of a "per protocol" or an "intent(ion) 
to treat" analysis of the resulting data.  The former "counts" each unit in the 
treatment it actually receives; the latter "counts" each unit in the treatment to 
which it initially has been assigned, no matter if it "ends up" in a different 
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treatment or in no treatment.  I prefer the former; most members of the scientific 
community, especially biostatisticians and epidemiologists, prefer the latter. 

5.   The persons who end up in a treatment that turns out to be inferior might be  
denied the opportunity for better health and a better quality of life. 

6.   Researchers who conduct randomized clinical trials either must trust 
probability to achieve approximate equality at baseline or carry out some sorts of 
tests of pre-experimental.equivalence and act accordingly, by adjusting for the 
possible influence of confounding variables that might have led to a lack of 
comparability.  The former approach is far better.  That is precisely what a 
statistical significance test of the difference on the "posttest" variable(s) is for:  Is 
the difference greater than the "chance" criterion indicates (usually a two-tailed 
alpha level)? To carry out baseline significance tests is just bad science.  (See, 
for example, the first "commandment" in Knapp & Brown, 2014.) 

7.   Researchers should use a randomization (permutation) test for analyzing the 
data, especially if the study sample has not been randomly drawn.  Most people 
don't; they prefer t-tests or ANOVAs, with all of their hard-to-satisfy assumptions. 

8.   Is the causality that is justified for true experiments really so important?  Most 
research questions in scientific research are not concerned with experiments, 
much less causality (see, for example, White, 2010). 

9.   If there were no experiments we wouldn't have to distinguish between 
whether we're searching for "causes of effects" or "effects of causes".  (That is a 
very difficult distinction to grasp, and one I don't think is terribly important, but if 
you care about it see Dawid, Faigman, & Fienberg, 2014, the comments 
regarding that article, and their response.) 

10.  In experiments the participants are often regarded at best as random 
representatives of their respective populations rather than as individual persons.   

As is the case for good debaters, I would now like to present some counter-
arguments to the above. 

In defense of experiments 

1.  The artificiality can be at least partially reduced by having the experimenters  
explain how important it is that chance, not personal preference, be the basis for 
determining which people comprise the treatment groups.  They should also 
inform the participants that whatever the results of the experiment are, the 
findings are most useful to society in general and not necessarily to the 
participants themselves. 

2,    There are some situations for which blinding is only partially necessary.  For 
example, if the experiment is a counter-balanced design concerned with two 
different teaching methods, each person is given each treatment, albeit in 
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randomized order, so every participant can (often must) know which treatment  
he(she) is getting on which occasion. The experimenters can (and almost always 
must) also know, in order to be able to teach the relevant method at the relevant 
time.  [The main problem with a counter-balanced design is that a main effect 
could actually be a complicated treatment-by-time interaction.] 

3.  The training required for implementing an experiment is often no more 
extensive than that required for carrying out a survey or a correlational study. 

4.   Per protocol vs. intention-to-treat is a very controversial and methodologically 
complicated matter.  Good "trialists" need only follow the recommendations of 
experts in their respective disciplines. 

5.   See the second part of the counter-argument to #1, above. 

6.   Researchers should just trust random assignment to provide approximate 
pre-experimental equivalence of the treatment groups.  Period.  For extremely 
small group sizes, e.g., two per treatment, the whole experiment should be 
treated just like a series of case studies in which a "story" is told about each 
participant and what the effect was of the treatment that he(she) got. 

7.   A t-test is often a good approximation to a randomization test, for evidence 
regarding causality but not for generalizability from sample to population, unless 
the design has incorporated both random sampling and random assignment. 

8.   In the previous chapter I cite several philosophers and statisticians who 
strongly believe that the determination of whether X caused Y, Y caused X, or 
both were caused by W is at the heart of science.  Who am I to argue with them?  
I don't know the answer to that question.  I do know that I often take positions 
opposite to those of experts, whether my positions are grounded in expertise of 
my own or are merely contrarian. 

9.   If you are convinced that the determination of causality is essential, and 
furthermore that it is necessary to distinguish between those situations where the 
emphasis is placed on the causes of effects as opposed to the effects of causes, 
go for it, but be prepared to have to do a lot of hard work.  (Maybe I'm just lazy.) 

10.  Researchers who conduct non-experiments are sometimes just as crass in 
their concern (lack of concern?) about individual participants.  For example, does 
an investigator who collects survey data from available online people even know, 
much less care, who is who? 
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CHAPTER 4:  WHAT A PILOT STUDY ISéAND ISNôT 
 
Introduction 
 
Googling ñpilot studyò returns almost 10 million entries.   One of the first things 
that come up are links to various definitions of a pilot study, some of which are 
quite similar to one another and some of which differ rather dramatically from one 
another. 
 
The purpose of the present chapter is twofold:  (1) to clarify some of those 
definitions; and (2) to further pursue specific concerns regarding pilot studies, 
such as the matter of sample size; the question of whether or not the results of 
pilot studies should be published; and the use of obtained effect sizes in pilot 
studies as hypothesized effect sizes in main studies.  I would also like to call 
attention to a few examples of studies that are called pilot studies (some 
correctly, some incorrectly); and to recommend several sources that discuss 
what pilot studies are and what they are not. 
 
Definitions 
 
1.  To some people a pilot study is the same as a feasibility study (sometimes 
referred to as a "vanguard study"  [see Thabane, et al., 2010 regarding that 
term]); i.e., it is a study carried out prior to a main study, whose purpose is to ñget 
the bugs outò beforehand.  A few authors make a minor distinction between pilot 
study and feasibility study, with the former requiring slightly larger sample sizes 
and the latter focusing on only one or two aspects, e.g., whether or not 
participants in a survey will agree to answer certain questions that have to do 
with religious beliefs or sexual behavior.  
 
2.  Other people regard any small-sample study as a pilot study, whether or not it 
is carried out as a prelude to a larger study.  For example, a study of the 
relationship between length and weight for a sample of ten newborns is not a 
pilot study, unless the purpose is to get some evidence for the quality of  
previously untried measuring instruments.  (That is unlikely, since reliable and 
valid methods for measuring length and weight of newborns are readily 
available.)  A defensible designation for such an investigation might be the term 
"small study" itself.  ñExploratory studyò or ñdescriptive studyò have been 
suggested, but they require much larger samples. 
 
3.  Still others restrict the term to a preliminary miniature of a randomized clinical 
trial.  Randomized clinical trials (true experiments) arenôt the only kinds of studies 
that require piloting, however.  See, for example, the phenomenological study of 
three White females and one Hispanic male by Deal (2010) that was called a 
pilot study, and appropriately so. 



 20 

4.  Perhaps the best approach to take for a pilot study is to specify its particular 
purpose.  Is it to try out the design protocol?  To see if subjects agree to be 
active participants?  To help in the preparation of a training manual?  Etc.                   
 
Sample size 
 
What sample size should be used for a pilot study?  Julious (2005) said 12 per 
group and provided some reasons for that claim.  Hertzog (2008) wrote a long 
article devoted to the question.  The approach she favored was the determination 
of the sample size that is tolerably satisfactory with respect to the width of a 
confidence interval around the statistic of principal interest.  That is appropriate if 
the pilot sample is a random sample, and if the statistic of principal interest in the 
subsequent main study is the same as the one in the pilot study.  It also avoids 
the problem of the premature postulation of a hypothesis before the design of the 
main study is finalized.  The purpose of a pilot study is not to test a substantive 
hypothesis (see below), and sample size determination on the basis of a power 
analysis is not justified for such studies.   
 
Hertzog (2008) also noted in passing some other approaches to the 
determination of sample size for a pilot study that have been suggested in the 
literature, e.g., ñapproximately 10 participantsò (Nieswiadomy, 2002) and ñ10% of 
the final study sizeò (Lackey & Wingate, 1998). 
 
Reporting the substantive results of a pilot study 
 
Should the findings of a pilot study be published?  Some researchers say ñyesò, 
especially if no serious deficiencies are discovered in the pilot.  Others give a 
resounding ñnoò.  Consider an artificial example of a pilot study that might be 
carried out prior to a main study of the relationship between sex and political 
affiliation for nurses.  There are 48 nurses in the sample, 36 of whom are females 
and 12 of whom are males.  Of the 36 femalse, 24 are Democrats and 12 are 
Republicans.  Of the 12 males, 3 are Democrats and 9 are Republicans.  The 
data are displayed in Table 1. 
 
Table 1:  A contingency table for investigating the relationship between sex and 
political affiliation. 
 
           Sex 
    Male  Female        Total 
Political Affiliation 
 Democrat  3 (25%)         24 (67%)    27      
 
 Republican  9 (75%)         12 (33%)    21 
 
 Total           12                    36       48   
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The females were more likely to be Democrats than the males (66.67% vs. 25%, 
a difference of over 40%).  Or, equivalently, the males were more likely to be 
Republicans (75% vs. 33.33%, which is the same difference of over 40%). 
 
A sample of size 48 is "on the high side" for pilot studies, and if that sample were 
to have been randomly drawn from some well-defined population and/or known 
to be representative of such a population, an argument might be made for 
seeking publication of the finding that would be regarded as a fairly strong 
relationship between sex and political affiliation. 
 
On the other hand, would a reader really care about the published result of a 
difference of over 40% between female and male nurses for that pilot sample?  
What matters is the magnitude of the difference in the main study.      
 
Obtained effects in pilot studies and hypothesized effects in main studies 
 
In the previous sections it was argued that substantive findings of pilot studies 
are not publishable and sample sizes for pilot studies should not be determined 
on the basis of power analysis.  That brings up what is one of the most serious 
misunderstandings of the purpose of a pilot study, viz., the use of the obtained 
effects obtained in pilot studies as the hypothesized effects in the subsequent 
main studies.  
 
Very simply put, hypothesized effects of clinically important interventions should 
come from theory, not from pilot studies (and usually not from anything else, 
including previous research on the same topic).  If there is no theoretical 
justification for a particular effect (usually incorporated in a hypothesis alternative 
to the null), then the main study should not be undertaken.  The following 
artificial, but not atypical, example should make this point clear. 
 
Suppose that the effectiveness of a new drug is to be compared with the 
effectiveness of an old drug for reducing the pain associated with bed sores.     
The researcher believes that a pilot study is called for, because both of the drugs 
might have some side effects and because the self-report scale for measuring 
pain is previously untested.  The pilot is undertaken for a sample of size 20 and it 
is found that the new drug is a fourth of a standard deviation better than the old 
drug.  A fourth of a standard deviation difference is usually regarded as a ñsmallò 
effect.  For the main study (a randomized clinical trial) it is hypothesized that the 
effect will be the same, i.e., a fourth of a standard deviation.  Cohenôs (1988) 
power and sample size tables are consulted, the optimum sample size is 
determined, a sample of that size is drawn, the main study is carried out, and the 
null hypothesis of no effect is either rejected or not rejected, depending upon 
whether the sample test statistic is statistically significant or not. 
 
That is not an appropriate way to design a randomized clinical trial.  It is difficult 
to imagine how a researcher could be comfortable with a hypothesized effect 
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size arising from a small pilot study that used possibly deficient methods.  
Researchers admittedly find it difficult to postulate an effect size to be tested in a 
main study, since most theories donôt explicitly claim that ñthe effect is largeò or 
ñthe effect is small [but not null]ò, or whatever, so they often default to ñmediumò.  
That too is inappropriate.  It is much better to intellectualize the magnitude of a 
hypothesized effect that is clinically defensible than to use some arbitrary value.  
 
Some real-world examples 
 
In order to illustrate proper and improper uses of the term ñpilot studyò the 
following four examples have been selected from the nursing research literature 
of the past decade (2001 to 2010).  The four studies might have other 
commendable features or other not-so-commendable features.  The emphasis 
will be placed only on the extent to which each of the studies lays claim to being 
a pilot study.  All have the words ñpilot studyò in their titles or subtitles.  
 
1.  Sole, Byers, Ludy, and Ostrow (2002), ñSuctioning techniques and airways 
management practices: Pilot study and instrument evaluationò. 
 
This was a prototypical pilot study.  The procedures that were planned to be used 
in a subsequent main study (STAMP, a large multisite investigation) were tried 
out, some problems were detected, and the necessary changes were 
recommended to be implemented. 
 
2.  Jacobson and Wood (2006), ñLessons learned from a very small pilot studyò. 
 
This was also a pilot study, in the feasibility sense.  Nine persons from three 
families were studied in order to determine if a proposed in-home intervention 
could be properly implemented. 
 
3.  Minardi and Blanchard (2004), ñOlder people with depression: pilot studyò. 
 
This was not a pilot study.  It was a ñquasi-experimental, cross-sectionalò study 
(Abstract) that investigated the prevalence of depression for a convenience 
sample of 24 participants.  There was no indication that the study was carried out 
in order to determine if there were any problems with methodological matters, 
and there was no reference to a subsequent main study. 
 
4.  Tousman, Zeitz, and Taylor (2010), ñA pilot study assessing the impact 
of a learner-centered adult asthma self-management program on psychological 
outcomesò.    
 
This was also not a pilot study.  There was no discussion of a specific plan to 
carry out a main study, other than the following rather general sentence near the 
end of the article: ñIn the future, we plan to offer our program within a large health 
care system where we will have access to a larger pool of applicants to conduct 
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a randomized controlled behavioral trialò (p. 83).  The study itself was a single-
group (no control group) pre-experiment (Campbell & Stanleyôs [1966] Design 
#2) in which change from pre-treatment to post-treatment of a convenience 
sample of 21 participants was investigated.  The substantive results were of 
primary concern. 
 
Recommended sources for further reading 
 
There are many other sources that provide good discussions of the ins and outs 
of pilot studies.  For designations of pilot studies in nursing research it would be 
well to start with the section in Polit and Beck (2011) and then read the editorials 
by Becker (2008) and by Conn (2010) and the article by Conn, Algase, Rawl, 
Zerwic, and Wymans (2010).  Then go from there to Thabane, et al.'s (2010) 
tutorial, the section in Moher, et al. (2010) regarding the CONSORT treatment of 
pilot studies, and the articles by Kraemer, Mintz, Noda, Tinkleberg, and 
Yesavage (2006) and Leon, Davis, and Kraemer (2011).  Kraemer and her 
colleagues make a very strong case for not using an obtained effect size from a 
pilot study as a hypothesized effect size for a main study.  Kraemer also has a 
video clip on pilot studies, which is accessible at the 4Researchers.org website. 
 
A journal entitled Pilot and Feasibility Studies has recently been published.  Of 
particular relevance to the present chapter are the editorial for the inaugural 
issue by Lancaster (2015) and the article by Ashe, et al. (2015) in that same 
issue. 
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CHAPTER 5: WOMB MATES 

 

      
 
 
I've always been fascinated by twins ("womb mates"; I stole that term from a 
2004 article in The Economist).  As far as I know, I am not one (my mother and 
father never told me so, anyhow), but my name, Thomas, does mean "twin". 
I am particularly concerned about the frequency of twin births and about the non-
independence of observations in studies in which some or all of the participants 
are twins.  This chapter will address both matters. 
 
Frequency 
 
According to various sources on the internet (see for example, CDC, 2013; 
Fierro, 2014): 
 
1.  Approximately 3.31% of all births are twin births, either monozygotic 
("identical") or dizygotic ("fraternal").  Monozygotic births are necessarily same-
sex; dizygotic births can be either same-sex or opposite-sex. 
 
2.  The rates are considerably lower for Hispanic mothers (approximately 2.26%). 
 
3.  The rates are much higher for older mothers (approximately 11% for mothers 
over 50 years of age). 
 
4.   The rate for a monozygotic twin birth (approximately 1/2%) is less than that 
for a dizygotic twin birth. 
 
An interesting twin dataset 
 
I recently obtained access to a large dataset consisting of adult male radiologic 
technicians.  187 of them were twins, but not of one another (at least there was 
no indication of same).  It was tempting to see if any of their characteristics 
differed "significantly" from adult male twins in general, but that was not justifiable 
because although those twins represented a subset of a 50% random sample of 
the adult male radiologic technicians, they were not a random sample of US 
twins.  Nevertheless, here are a few findings for those 187 people: 
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1,  The correlation (Pearson product-moment) between their heights and their 
weights was approximately .43 for 175 of the 187.  (There were some missing 
data.)  That's fairly typical.  [You can tell that I like to investigate the relationship 
between height and weight.] 
 
2,  For a very small  subset (n = 17) of those twins who had died during the 
course of the study, the correlation between height and weight was 
approximately .50, which again is fairly typical. 
 
3.  For that same small sample, the correlation between height and age at death 
was approximately -.14 (the taller ones had slightly shorter lives) and the 
correlation between weight and age at death was approximately -.42 (the heavier 
persons also had shorter lives).  Neither finding is surprising.  Big dogs have 
shorter life expectancies, on the average (see, for example, the pets.ca website); 
so do big people. 
 
Another interesting set of twin data 
 
In his book, Twins: Black and White, Osborne (1980) provided some data for the 
heights and weights of Black twin-pairs.  In one of my previous articles (Knapp, 
1984) I discussed some of the problems involved in the determination of the 
relationship between height and weight for twins.  (I used a small sample of 
seven pairs of Osborne's 16-year-old Black female identical twins.)  The 
problems ranged from plotting the data (how can you show who is the twin of 
whom?) to either non-independence of the observations if you treat "n" as 14 or 
the loss of important information if you sample one member of each pair for the 
analysis.  'tis a difficult situation to cope with methodologically.  Here are the 
data.  How would you proceed, dear reader (as Ann Landers used to say)? 
 
 
Pair  Heights (X) in inches Weights (Y) in pounds 
 
1 (Aa)  A: 68  a: 67  A: 148  a: 137 
2 (Bb)  B: 65  b: 67  B: 124  b: 126 
3 (Cc)  C: 63  c: 63  C: 118  c: 126 
4 (Dd)  D: 66  d: 64  D: 131  d: 120 
5 (Ee)  E: 66  e: 65  E: 123  e: 124 
6 (Ff)  F: 62  f:  63  F: 119  f:  130 
7(Gg)  G: 66  g: 66  G: 114 g: 104 
 
 
Other good sources for research on twins and about twins in general 
 
1.  Kenny (2008).  In his discussion of dyads and the analysis of dyadic data, 
David Kenny treats the case of twins as well as other dyads (supervisor-
supervisee pairs, father-daughter pairs, etc.)  The dyad should be the unit of 
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analysis (individual is "nested" within dyad); otherwise (and all too frequently) the 
observations are not independent and the analysis can produce very misleading 
results. 
 
2.  Kenny (2010).  In this later discussion of the unit-of analysis problem, Kenny 
does not have a separate section on twins but he does have an example of 
children nested within classrooms and classrooms nested within schools, which 
is analogous to persons nested within twin-pairs and twin-pairs nested within 
families.  
 
3.  Rushton & Osborne (1995).  In a follow-up article to Osborne's 1980 book, 
Rushton and Osborne used the same dataset for a sample of 236 twin-pairs 
(some male, some female; some Black, some White; some identical, some 
fraternal; all ranged in age from 12 to 18 years) to investigate the prediction of 
cranial capacity. 
 
4.  Segal (2011).  In this piece Dr. Nancy Segal excoriates the author of a 
previous article for his misunderstandings of the results of twin research. 
 
5.   Twinsburg, Ohio.  There is a Twins Festival held every August in this small 
town.  Just google Twinsburg and you can get a lot of interesting information, 
pictures, etc. about twins and other multiples who attend those festivals  
 
 
Note:  The picture at the beginning of this paper is of the Bryan twins.  To quote 
from the Wikipedia article about them: 
 
"The Bryan brothers  are identical twin brothers Robert Charles "Bob" Bryan and 

Michael Carl "Mike" Bryan, American professional doubles tennis players. They were 

born on April 29, 1978, with Mike being the elder by two minutes. The Bryans have won 

multiple Olympic medals, including the gold in 2012 and have won more professional 

games, matches, tournaments and Grand Slams than any other pairing. They have held 

the World No. 1 doubles ranking jointly for 380 weeks (as of September 8, 2014), which 

is longer than anyone else in doubles history." 
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CHAPTER 6:  VALIDITY?  RELIABILITY?  DIFFERENT TERMINOLOGY 
ALTOGETHER? 
           
Several years ago I wrote an article entitled ñValidity, reliability, and neitherò 
(Knapp, 1985) in which I discussed some researchersô identifications of  
investigations as validity studies or reliability studies but which were actually 
neither.  In what follows I pursue the matter of confusion regarding the terms 
ñvalidityò and ñreliabilityò and suggest the possibility of alternative terms for 
referring to the characteristics of measuring instruments.  I am not the first 
person to recommend this.   As long ago as 1936, Goodenough suggested that 
the term ñreliabilityò be done away with entirely.  Concerns about both ñreliabilityò 
and  ñvalidityò have been expressed by Stallings & Gillmore (1971), Feinstein 
(1985, 1987), Suen (1988), Brown (1989), and many others.    
 
The problems 
 
The principal problem, as expressed so succintly by Ennis (1999), is that the 
word ñreliabilityò as used in ordinary parlance is what measurement experts 
subsume under ñvalidityò.  (See also Feldt & Brennan, 1989.)  For example, if a 
custodian falls asleep on the job every night, most laypeople would say that 
he(she) is unreliable, i.e., a poor custodian; whereas psychometricians would say 
that he(she) is perfectly reliable, i.e., a consistently poor custodian. 
 
But thereôs more.  Even within the measurement community there are all kinds of 
disagreements regarding the meaning of validity.  For example, some contend 
that the consequences of misuses of a measuring instrument should be taken 
into account when evaluating its validity; others disagree.  (Pro: Messick, 1995, 
and others; Anti: Lees-Haley, 1996, and others.)  And there is the associated 
problem of the awful (in my opinion) terms ñinternal validityò and ñexternal validityò 
that have little or nothing to do with the concept of validity in the measurement 
sense, since they apply to the characteristics of a study or its design and not to 
the properties of the instrument(s) used in the study.  [ñInternal validityò is 
synonymous with ñcausalityò and ñexternal validityò is synonymous with 
ñgeneralizability.ò ónuff said.] 
 
The situation is even worse with respect to reliability.  In addition to matters such 
as the (un?)reliable custodian, there are the competing definitions of the term 
ñreliabilityò within the field of statistics in general (a sample statistic is reliable if it 
has a tight sampling distribution with respect to its counterpart population 
parameter) and within engineering (a piece of equipment is reliable if there is a 
small probability of its breaking down while in use).  Some people have even 
talked about the reliability of a study.  For example, an article I recently came 
across on the internet claimed that a study of the reliability (in the engineering 
sense) of various laptop computers was unreliable, and so was its report! 
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Some changes in, or retentions of, terminology and the reasons for same 
 
There have been many thoughtful and some not so thoughtful recommendations 
regarding change in terminology.  Here are a few of the thoughtful ones: 
 
1.  Iôve already mentioned Goodenough (1936).  She was bothered by the fact 
that the test-retest reliability of examinations (same form or parallel forms) 
administered a day or two apart are almost always lower than the split-halves 
reliability of those forms when stepped up by the Spearman-Brown formula, 
despite the fact that both approaches are concerned with estimating the reliability 
of the instruments.   She suggested that the use of the term ñreliabilityò be 
relegated to ñthe limbo of outworn conceptsò (p. 107) and that results of 
psychometric investigations be expressed in terms of whatever procedures were 
used in estimating the properties of the instruments in question. 
 
2.  Adams (1936).   In that same year he tried to sort out the distinctions among 
the usages of the terms ñvalidityò, ñreliabilityò, and ñobjectivityò in the 
measurement literature of the time.  [Objectivity is usually regarded as a special 
kind of reliability:  ñinter-rater reliabilityò if more than one person is making the 
judgments; ñintra-rater reliabilityò for a single judge.]  He found the situation to be 
chaotic and argued that validity, reliability, and objectivity are qualities of 
measuring instruments (which he called ñscalesò).  He suggested that ñaccuracyò 
should be added as a term to refer to the quantitative aspects of test scores. 
 
3.  Thorndike (1951), Stanley (1971), Feldt and Brennan (1989), and Haertel 
(2006).  They are the authors of the chapter on reliability in the various editions of 
the Educational Measurement compendium.  Although they all commented upon 
various terminological problems, they were apparently content to keep the term 
ñreliabilityò as is [judging from the retention of the single word ñReliabilityò in the 
chapter title in each of the four editions of the book]. 
 
4.  Cureton (1951), Cronbach (1971), Messick (1989), and Kane (2006).  They 
were the authors of the corresponding chapters on validity in Educational 
Measurement.  They too were concerned about some of the terminological 
confusion regarding validity [and the chapter titles went from ñValidityò to ñTest 
Validationò back to ñValidityò and thence to ñValidationò, in that chronological 
order], but the emphasis changed from various types of validity in the first two 
editions to an amalgam under the heading of Construct Validity in the last two. 
 
5.  Ennis (1999).  Iôve already referred to his clear perception of the principal 
problem with the term ñreliabilityò.  He suggested the replacement of ñreliabilityò 
with ñconsistencyò.  He was also concerned about the terms ñtrue scoreò and 
ñerror of measurementò.  [More about those later.] 
 
6.  AERA, APA, and NCME  Standards (2014).  The titles of the two sections are 
ñValidityò and ñErrors of Measurement and Reliability/Precisionò, respectively.   
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Like the authors of the chapters in the various editions of Educational 
Measurement, the authors of the sections on validity express some concerns 
about confusions in terminology, but they appear to want to stick with ñvalidityò, 
whereas the authors of the section on reliability prefer to expand the term 
ñreliabilityò.  [In the previous (1999) version of the Standards the title was 
ñReliability and Errors of Measurementò.]  
 
My personal recommendations 
 
1.  I prefer ñrelevanceò to ñvalidityò, especially given my opposition to the terms 
ñinternal validityò and ñexternal validityò.  I realize that ñrelevanceò is a word that is 
over-used in the English language, but what could be a better measuring 
instrument than one that is completely relevant to the purpose at hand?  
Examples: a road test for measuring the ability to drive a car; a stadiometer for 
measuring height; and a test of arithmetic items all of the form a + b = ___ for 
measuring the ability to add. 
 
2.  Iôm mostly with Ennis (1999) regarding changing ñreliabilityò to ñconsistencyò, 
even though in my unpublished book on the reliability of measuring instruments 
(Knapp, 2015) I come down in favor of keeping it ñreliabilityò.  [Ennis had nothing 
to say one way or the other about changing ñvalidityò to something else.] 
 
3.  I donôt like to lump techniques such as Cronbachôs alpha under either 
ñreliabilityò or ñconsistencyò.  For those I prefer the term ñhomogeneityò, as did 
Kelley (1942); see Traub (1997).  I suggest that time must pass (even if just a 
few minutesðsee Horst, 1954) between the measure and the re-measure. 
 
4,  I also donôt like to subsume ñobjectivityò under ñreliabilityò (either inter-rater or 
intra-rater).  Keep it as ñobjectivityò. 
 
5.  Two terms I recommend for Goodenoughôs limbo are ñaccuracyò and 
ñprecisionò, at least as far as measurement is concerned.  The former term is too 
ambiguous.  [How can you ever determine whether or not something is 
accurate?]  The latter term should be confined  to the number of digits  that are 
defensible to report when making a measurement. 
 
True score and error of measurement 
 
As I indicated above, Ennis (1999) doesnôt like the terms ñtrue scoreò and ñerror 
of measurementò.  Both terms are used in the context of reliability.  The former 
refers to (1) the score that would be obtained if there were no unreliability;  and  
(2) the average (arithmetic mean) of all of the possible obtained scores for an 
individual.  The latter is the difference between an obtained score and the 
corresponding true score.  What bothers Ennis is that the term ñtrue scoreò would 
seem to indicate the score that was actually deserved in a perfectly valid test, 
whereas the term is associated only with reliability. 
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I donôt mind keeping both ñtrue scoreò and ñerror of measurementò under 
ñconsistencyò, as long as there is no implication that the measuring instrument is 
also necessarily ñrelevantò.  The instrument chosen to provide an 
operationalization of a particular attribute such as height or the ability to add or to 
drive a car might be a lousy one (thatôs primarily a judgment call), but it always 
needs to produce a tight distribution of errors of measurement for any given 
individual. 
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CHAPTER 7:  SEVEN: A COMMENTARY REGARDING CRONBACHôS 
COEFFICIENT ALPHA  
 
A population of seven people took a seven-item test, for which each item is 
scored on a seven-point scale.  Here are the raw data: 
 
   ID    item1     item2     item3     item4     item5     item6     item7     total 
  
    1       1           1            1            1            1           1            1              7 
    2       2           2            2            2            2           3            3            16 
    3       3           4            6            7            7           4            5            36 
    4       4           7            5            3            5           7            6            37 
    5       5           6            4            6            4           5            2            32 
    6       6           5            7            5            3           2            7            35 
    7       7           3            3            4            6           6            4            33 
  
Here are the inter-item correlations and the correlations between each of the 
items and the total score: 
   
               item1    item2    item3    item4    item5    item6    item7 
 item2     0.500 
 item3     0.500    0.714 
 item4     0.500    0.536    0.750 
 item5     0.500    0.464    0.536    0.714 
 item6     0.500    0.643    0.214    0.286    0.714 
 item7     0.500    0.571    0.857    0.393    0.464    0.286 
 total       0.739    0.818    0.845    0.772    0.812    0.673    0.752 
 
The mean of each of the items is 4 and the standard deviation is 2 (with division 
by N, not N-1; these are data for a population of people as well as a population of 
items).  The inter-item correlations range from .214 to .857 with a mean of .531.  
[The largest eigenvalue is 4.207.  The next largest is 1.086.]  The range of the 
item-to-total correlations is from .673 to .845.  Cronbachôs alpha is .888.  Great 
test (at least as far as internal consistency is concerned)?  Perhaps; but there is 
at least one problem.  See if you can guess what that is before you read on. 
 
While youôre contemplating, let me call your attention to seven interesting 
sources that discuss Cronbachôs alpha (see References for complete citations): 
 
1.  Cronbachôs (1951) original article (naturally).   
2.  Knapp (1991). 
3.  Cortina (1993). 
4.  Cronbach (2004). 
5.  Tan (2009). 
6.  Sijtsma (2009). 
7.  Gadermann, Guhn, and Zumbo (2012). 
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OK.  Now back to our data set.  You might have already suspected that the data 
are artificial (all of the items having exactly the same means and standard 
deviations, and all of items 2-7 correlating .500 with item 1).  Youôre right; they 
are; but thatôs not what I had in mind.  You might also be concerned about the 
seven-point scales (ordinal rather than interval?).  Since the data are artificial, 
those scales can be anything we want them to be.  If they are Likert-type scales 
they are ordinal.  But they could be something like ñnumber of days per weekò 
that something happened, in which case they are interval.  In any event, thatôs 
also not what I had in mind.  You might be bothered by the negative skewness of 
the total score distribution.  I donôt think that should matter.  And you might not 
like the smallness (and the ñseven-nessò?  I like sevenséthus the title of this 
chapter) of the number of observations.  Donôt be.  Once the correlation matrix 
has been determined, the N is not of direct relevance.  (The ñsoftwareò doesnôt 
know or care what N is at that point.)  Had this been a sample data set, however, 
and had we been interested in the statistical inference from a sample Cronbachôs 
alpha to the Cronbachôs alpha in the population from which the sample has been 
drawn, the N would be of great importance.    
 
What concerns me is the following: 
 
The formula for Cronbachôs alpha is kravg /[1 + (k-1)ravg ], where k is the number 
of items and ravg is the average (mean) inter-item correlation, when all of the 
items have equal variances (which they do in this case) and is often a good 
approximation to Cronbachôs alpha even when they donôt. (More about this later.) 
Those rôs are Pearson rôs, which are measures of the direction and magnitude of 
the LINEAR relationship between variables.  Are the relationships linear? 
 
I have plotted the data for each of the items against the other items.  There are 
21 plots (the number of combinations of seven things taken two at a time).  Here 
is the first one. 
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         - 
 item2   -                            * 
         - 
         - 
      6.0+                                     * 
         - 
         -                                             * 
         - 
         - 
      4.0+                    * 
         - 
         -                                                     * 
         - 
         - 
      2.0+            * 
         - 
         -   * 
         - 
         - 
           ----+---------+---------+---------+---------+---------+--item1    
             1.2       2.4       3.6       4.8       6.0       7.2 
  
 
I donôt know about you, but that plot looks non-linear, almost parabolic, to me, 
even though the linear Pearson r is .500.  Is it because of the artificiality of the 
data, you might ask.  I donôt think so.  Here is a set of real data (item scores that I 
have excerpted from my daughter Katieôs thesis (Knapp, 2010)): [They are the 
responses by seven female chaplains in the Army Reserves to the first seven 
items of a 20-item test of empathy.] 
 
    ID  item1     item2     item3     item4     item5     item6     item7       total 
  
    1      5           7            6            6            6           6            6               42 
    2      1           7            7            5            7           7            7               41 
    3      6           7            6            6            6           6            6               43 
    4      7           7            7            6            7           7            6               47 
    5      2           6            6            6            7           6            5               38 
    6      1           1            3            4            5           6            5               25 
    7      2           5            3            6            7           6            6               35 
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Here are the inter-item correlations and the correlation of each item with the total 
score: 
  
               item1    item2    item3    item4    item5    item6    item7 
 item2     0.566 
 item3     0.492    0.826 
 item4     0.616    0.779    0.405 
 item5     0.060    0.656    0.458    0.615 
 item6     0.156    0.397    0.625   -0.062    0.496 
 item7     0.138    0.623    0.482    0.175    0.439    0.636 
 total       0.744    0.954    0.855    0.746    0.590    0.506    0.566 
 
Except for the -.062 these correlations look a lot like the correlations for the 
artificial data.  The inter-item correlations range from that -.062 to .826, with a 
mean of .456.  [The largest eigenvalue is 3.835 and the next-largest eigenvalue 
is 1.479]  The item-to-total correlations range from .506 to .954.  Cronbachôs 
alpha is .854.  Another great test? 
 
But how about linearity?  Here is the plot for item2 against item1 for the real data. 



 39 

         - 
 item2   -   *                                 *       *       * 
         - 
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Thatôs a worse, non-linear plot than the plot for the artificial data, even though the 
linear Pearson r is a respectable .566. 
 
Going back to the formula for Cronbachôs alpha that is expressed in terms of the 
inter-item correlations, it is not the most general formula.  Nor is it the one that 
Cronbach generalized from the Kuder-Richardson Formula #20 (Kuder & 
Richardson, 1937) for dichotomously-scored items.  The formula that always 
ñworksò is: Ŭ = [k/(k-1)]{1-(×ůi 2/ů2)}, where k is the number of items, ůi 

2 is the 
variance of item i (for i=1,2,é,k) and ů2 is the variance of the total scores.  For 
the artificial data, that formula yields the same value for Cronbachôs alpha as 
before, i.e., .888, but for the real data it yields a value of .748, which is lower than 
the .854 previously obtained.  That happens because the item variances are not 
equal, ranging from a low of .204 (for item #6) to a high of 5.387 (for item #1).  
The item variances for the artificial data were all equal to 4. 
 
So what?  Although the most general formula was derived in terms of inter-item 
covariances rather than inter-item correlations, there is still the (hidden?) 
assumption of linearity. 
 
The moral to the story is the usual advice given to people who use Pearson rôs: 
ALWAYS PLOT THE DATA FIRST.  If the inter-item plots donôt look linear, you 
might want to forgo Cronbachôs alpha in favor of some other measure, e.g., the 
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ordinal reliability coefficient advocated by Gadermann, et al. (2012).  There are 
tests of linearity for sample data, but this chapter is concerned solely with the 
internal consistency of a measuring instrument when data are available for an 
entire population of people and an entire population of items (however rare that 
situation might be). 
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CHAPTER 8:  ASSESSING THE VALIDITY AND RELIABILITY OF LIKERT 
SCALES AND VISUAL ANALOG(UE) SCALES 
  
 
Introduction 
 
Consider the following scales for measuring pain: 
 
It hurts:  Strongly disagree    Disagree    Can't tell    Agree   Strongly agree 
              (1)                   (2)      (3)           (4)              (5) 
 
How bad is the pain?:  ______________________________________ 
    no pain               excruciating 
 
How much would you be willing to pay in order to alleviate the pain?______ 
 
 
The first two examples, or slight variations thereof, are used a lot in research on 
pain.  The third is not.  In what follows I would like to discuss how one might go 
about assessing (testing, determining) the validity and the reliability of measuring 
instruments of the first kind (a traditional Likert Scale [LS]) and measuring 
instruments of the second kind (a traditional Visual Analog Scale [VAS]) for 
measuring the presence or severity of pain and for measuring some other 
constructs.  I will close the paper with a few brief remarks regarding the third 
example and how its validity and reliability might be assessed. 
 
The sequence of steps 
 
1.  Although you might not agree, I think you should start out by addressing 
content validity (expert judgment, if you will) as you contemplate how you would 
like to measure pain (or attitude toward legalizing marijuana, or whatever the 
construct of interest might be).  If a Likert-type scale seems to make sense to 
you, do the pain experts also think so?  If they do, how many scale points should 
you have?  Five, as in the above example, and as was the case for the original 
scale developed by Rensis Likert (1932)?  Why an odd number such as five?  In 
order to provide a "neutral", or "no opinion" choice?  Might not too many 
respondents cop out by selecting that choice?  Shouldn't you have an even 
number of scale points (how about just two?) so that respondents have to take a 
stand one way or the other?   
 
The same sorts of considerations hold for the "more continuous" VAS, originally 
developed by Freyd (1923).  (He called it a Graphic Rating Scale.  Unlike Likert, 
his name was not attached to it by subsequent users.  Sad.)  How long should it 
be?  (100 millimeters is conventional.)  How should the endpoints read?   Should 
there be intermediate descriptors underneath the scale between the two 
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endpoints?  Should it be presented to the respondents horizontally (as above) or 
vertically?  Why might that matter?   
 
2.  After you are reasonably satisfied with your choice of scale type (LS or VAS) 
and its specific properties, you should carry out some sort of pilot study in which 
you gather evidence regarding feasibility (how willing and capable are subjects to 
respond?), "face" validity (does it appear to them to be measuring pain, attitude 
toward marijuana, or whatever?), and tentative reliability (administer it twice to 
the same sample of people, with a small amount of time in-between 
administrations, say 30 minutes or thereabouts).  This step is crucial in order to 
"get the bugs out" of the instrument before its further use.  But the actual results, 
e.g., whether the pilot subjects express high pain or low pain, favorable attitudes 
or unfavorable attitudes, etc., should be of little or no interest, and certainly do 
not warrant publication.  
 
3.  If and when any revisions are made on the basis of the pilot study, the next  
step is the most difficult.  It entails getting hard data regarding the reliability 
and/or the validity of the LS or the VAS.  For a random sample drawn from the 
same population from which a sample will be drawn in the main study, a formal 
test-retest assessment should be carried out (again with a short interval between 
test and retest), and if there exists an instrument that serves as a "gold standard" 
it should also be administered and the results compared with the scale that is 
under consideration.   
 
Likert Scales 
 
As far as the reliability of a LS is concerned, you might be interested in evidence 
for either or both of the scale's "relative reliability" and its "absolute reliability".  
The former is more conventional; just get the correlation between score at Time 1 
and score at Time 2.  Ah, but what particular correlation?  The Pearson product-
moment correlation coefficient?  Probably not; it is appropriate only for interval-
level scales.  (The LS is an ordinal scale.)  You could construct a cxc 
contingency table, where c is the number of categories (scale points) and see if 
most of the frequencies lie in the upper-right and lower-left portions of the table.  
That would require a large number of respondents if c is more than 3 or so, in 
order to "fill up" the c2 cells; otherwise the table would look rather anemic.  If 
further summary of the results is thought to be necessary, either Guttman's 
(1946) reliability coefficient or Goodman & Kruskal's (1979) gamma (sometimes 
called the index of order association) would be good choices for such a table, 
and would serve as the reliability coefficient (for that sample on that occasion).  If 
the number of observations is fairly small and c is fairly large, you could calculate 
the Spearman rank correlation between score at Time 1 and score at Time 2, 
since you shouldn't have too many ties, which can often wreak havoc.     
 
[Exercise for the reader:  When using the Spearman rank correlation in 
determining the relationship between two ordinal variables X and Y, we get the 
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difference between the rank on X and the rank on Y for each observation.  For 
ordinal variables in general, subtraction is a "no-no".  (You can't subtract a 
"strongly agree" from an "undecided", for example.)  Shouldn't a rank-difference 
also be a "no-no"?  I think it should, but people do it all the time, especially when 
they're concerned about whether or not a particular variable is continuous 
enough, linear enough, or normal enough in order for the Pearson r to be 
defensible.] 
 
The matter of absolute reliability is easier to assess.  Just calculate the % 
agreement between score at Time 1 and score at Time 2.   
 
If there is a gold standard to which you would like to compare the scale under 
consideration, the (relative) correlation between scale and standard (a validity 
coefficient) needs to be calculated.  The choice of type of validity coefficient, like 
the choice of type of reliability coefficient, is difficult.  It all depends upon the 
scale type of the standard.  If it is also ordinal, with d scale points, a cxd table 
would display the data nicely, and Goodman & Kruskal's gamma could serve as 
the validity coefficient (again, for that sample on that occasion).  (N.B.:  If a gold 
standard does exist, serious thought should be given to forgoing the new 
instrument entirely, unless the LS or VAS under consideration would be briefer or 
less expensive, but equally reliable and content valid.) 
 
Visual Analog Scales 
 
The process for the assessment of the reliability and validity of a VAS is 
essentially the same as that for a LS.   As indicated above, the principal 
difference between the two is that a VAS is "more continuous" than a LS, but 
neither possesses a meaningful unit of measurement.  For a VAS there is a 
surrogate unit of measurement (usually the millimeter), but it wouldn't make any 
sense to say that a particular patient has X millimeters of pain.  (Would it?)  For a 
LS you can't even say 1 what or 2 what,..., since there isn't a surrogate unit. 
 
Having to treat a VAS as an ordinal scale is admittedly disappointing, particularly 
if it necessitates slicing up the scale into two or more (but not 101) pieces and 
losing some potentially important information.  But let's face it.  Most respondents 
will probably concentrate on the verbal descriptors along the bottom of the scale 
anyhow, so why not help them along?  (If there are no descriptors except for the 
endpoints, you might consider collapsing the scale into those two categories.)  
 
Statistical inference 
 
For the sample selected for the LS or VAS reliability and validity study, should 
you carry out a significance test for the reliability coefficient and the validity 
coefficient?  Certainly not a traditional test of the null hypothesis of a zero 
relationship.  Whether or not a reliability or a validity coefficient is significantly 
greater than zero is not the point (they darn well better be).  You might want to 
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test a "null" hypothesis of a specific non-zero relationship (e.g., one that has 
been found for some relevant norm group), but the better analysis strategy would 
be to put a confidence interval around the sample reliability coefficient and the 
sample validity coefficient.  (If you have a non-random sample it should be 
treated just like a population, i.e., descriptive statistics only.) 
 
The article by Kraemer (1975) explains how to test a hypothesis about, and how 
to construct a confidence interval for, the Spearman rank correlation coefficient, 
rho.  A similar article by Woods (2007; corrected in 2008) treats estimation for 
both Spearman's rho and Goodman & Kruskal's gamma.  That would take care of 
Likert Scales nicely. If the raw data for Visual Analog Scales are converted into 
either ranks or ordered categories, inferences regarding their reliability and 
validity coefficients could be handled in the same manner. 
                     
Combining scores on Likert Scales and Visual Analog Scales 
 
The preceding discussion was concerned with a single-item LS or VAS.  Many 
researchers are interested in combining scores on two or more of such scales in 
order to get a "total score".  (Some people argue that it is also important to 
distinguish between a Likert item and a Likert scale, with the latter consisting of a 
composite of two or more of the former.  I disagree; a single Likert item is itself a 
scale; so is a single VAS.)  The problems involved in assessing the validity and 
reliability of such scores are several magnitudes more difficult than for assessing 
the validity and reliability of a single LS or a single VAS. 
 
Consider first the case of two Likert-type items, e.g.,  the following: 
 
The use of marijuana for non-medicinal purposes is widespread. 
Strongly Disagree Disagree Undecided Agree       Strongly Agree 
            (1)       (2)        (3)     (4)     (5) 
   
The use of marijuana for non-medicinal purposes should be legalized. 
Strongly Disagree Disagree Undecided Agree       Strongly Agree 
            (1)       (2)        (3)     (4)     (5) 
 
All combinations of responses are possible and undoubtedly likely.  A respondent 
could disagree, for example, that such use is widespread, but agree that it should 
be legalized.  Another respondent might agree that such use is widespread, but 
disagree that is should be legalized.  How to combine the responses to those two 
items in order to get a total score?  See next paragraph.  (Note: Some people, 
e.g., some "conservative" statisticians, would argue that scores on those two 
items should never be combined; they should always be analyzed as two 
separate items.) 
 
The usual way the scores are combined is to merely add the score on Item 1 to 
the score on Item 2, and in the process of so doing to "reverse score", if and 
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when necessary, so that "high" total scores are indicative of an over-all favorable 
attitude and  "low" total scores are indicative of an over-all unfavorable attitude.   
The respondent who chose "2" (disagree) for Item 1 and "4" (agree) for Item 2 
would get a total score of 4 (i.e., a "reversed" 2) + 4 (i.e., a  "regular" 4)  = 8, 
since he(she) appears to hold a generally favorable attitude toward marijuana 
use.  But would you like to treat that respondent the same as a respondent who 
chose "5" for the first item and "3" for the second item?  They both would get a 
total score of 8.  See how complicated this is?  Hold on; it gets even worse! 
 
Suppose you now have total scores for all respondents.  How do you summarize 
the data?  The usual way is to start by making a frequency distribution of those 
total scores.  That should be fairly straightforward.  Scores can range from 2 to 
10, whether or not there is any reverse-scoring (do you see why?), so an 
"ungrouped" frequency distribution should give you a pretty good idea of what's 
going on.  But if you want to summarize the data even further, e.g., by getting 
measures of central tendency, variability, skewness, and kurtosis, you have 
some tough choices to make.  For example, is it the mean, the median, or the 
mode that is the most appropriate measure of central tendency for such data?  
The mean is the most conventional, but should be reserved for interval scales 
and for scales that have an actual unit of measurement.  (Individual Likert scales 
and combinations of Likert scales are neither: Ordinal in, ordinal out.)   The 
median should therefore be fine, although with an even number of respondents 
that can get tricky (for example, would you really like to report a median of 
something like 6.5 for this marijuana example?). 
 
Getting an indication of the variability of those total scores is unbelievably 
technically complicated.  Both variance and standard deviation should be ruled 
out because of non-intervality.  (If you insist on one or both of those, what do you 
use in the denominator of the formula... n or n-1?)  How about the range (the 
actual range, not the possible range)?  No, because of the same non-intervality 
property.  All other measures of variability that involve subtraction are also ruled 
out.  That leaves "eyeballing" the frequency distribution for variability, which is 
not a bad idea, come to think of it. 
 
I won't even get into problems involved in assessing skewness and kurtosis, 
which should probably be restricted to interval-level variables in any event.  (You 
can "eyeball" the frequency distribution for those characteristics just like you can 
for variability, which also isn't a bad idea.) 
 
The disadvantages of combining scores on two VASs are the same as those for 
combining scores on two LSs.  And for three or more items things don't get any 
better.   
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What some others have to say about the validity and the reliability of a LS or VAS 
 
The foregoing (do you know the difference between "forgoing" and "foregoing"?) 
discussion consists largely of my own personal opinions.  (You probably already 
have me pegged, correctly, as a "conservative" statistician.)  Before I turn to my 
most controversial suggestion of replacing almost all Likert Scales and almost all 
Visual Analog Scales with interval scales, I would like to call your attention to 
authors who have written about how to assess the reliability and/or the validity of 
a LS or a VAS, or who have reported their reliabilities or validities in substantive 
investigations.  Some of their views are similar to mine.  Others are diametrically 
opposed.  
 
1.  Aitken (1969) 
 
According to Google, this "old" article has been cited 1196 times!  It's that good, 
and has a brief but excellent section on the reliability and validity of a VAS.  (But 
it is very hard to get a hold of.  Thank God for helpful librarians like Kathy 
McGowan and Shirley Ricker at the University of Rochester.) 
 
2.  Price, et al. (1983). 
 
As the title of their article indicates, Price, et al. claim that in their study they have 
found the VAS to be not only valid for measuring pain but also a ratio-level 
variable.  (I don't agree.  But read the article and see what you think.) 
 
3.  Wewers and Lowe (1990) 
 
This is a very nice summary of just about everything you might want to know 
concerning the VAS, written by two of my former colleagues at Ohio State (Mary 
Ellen Wewers and Nancy Lowe).  There are fine sections on assessing the 
reliability and the validity of a VAS.  They don't care much for the test-retest 
approach to the assessment of the reliability of a VAS, but I think that is really the 
only option.  The parallel forms approach is not viable (what constitutes a parallel 
item to a given single-item VAS?) and things like Cronbach's alpha are no good 
because they require multiple items that are gathered together in a composite.  It 
comes down to a matter of the amount of time between test and retest.  It must 
be short enough so that the construct being measured hasn't changed, but it 
must be long enough so that the respondents don't merely "parrot back" at Time 
2 whatever they indicated at Time 1; i.e., it must be a "Goldilocks" interval.  
 
4.  Von Korff, et al. (1993) 
 
These authors developed what they call a "Quadruple Visual Analog Scale" for 
measuring pain.  It consists of four items, each having "No pain " and "worst 
possible pain" as the two endpoints, with the numbers 0 through 10 equally 
spaced beneath each item.  The respondents are asked to indicate the amount of 
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pain (1) now, (2) typical, (3) best, and (4) worst; and then to add across the four 
items.  Interesting, but wrong (in my opinion). 
  
5.  Bijur, Silver, and Gallagher (2001) 
 
This article was a report of an actual test-retest (and re-retest...) reliability study 
of the VAS for measuring acute pain.  Respondents were asked to record their 
pain levels in pairs one minute apart thirty times in a two-hour period.  The 
authors found the VAS to be highly reliable.  (Not surprising.  If I were asked 60 
times in two hours to indicate how much pain I had, I would pick a spot on the 
VAS and keep repeating it, just to get rid of the researchers!) 
 
6.  Owen and Froman (2005) 
 
Although the main purpose of their article was to dissuade researchers from 
unnecessarily collapsing a continuous scale (especially age) into two or more 
discrete categories, the authors made some interesting comments regarding 
Likert Scales.  Here are a couple of them: 
 
"...equal appearing interval measurements (e.g., Likert-type scales...)" (p. 496)  
 
"There is little improvement to be gained from trying to increase the response 
format from seven or nine options to, say, 100. Individual items usually lack 
adequate reliability, and widening the response format gives an appearance 
of greater precision, but in truth does not boost the itemôs reliability... However, 
when individual items are aggregated to a total (sum or mean) scale score, the 
continuous score that results usually delivers far greater precision."  (p. 499) 
 
A Likert scale might be an "equal appearing interval measurement", but it's not 
interval-level.  And I agree with the first part of the second quote (it sounds like a 
dig at Visual Analog Scales), but not with the second part.  Adding across ordinal 
items does not result in a defensible continuous score.  As the old adage goes, 
"you can't make a silk purse out of a sow's ear".  
 
7.  Davey, et al. (2007) 
 
There is a misconception in the measurement literature that a single item is 
necessarily unreliable and invalid.  Not so, as Davey, et al. found in their use of a 
one-item LS and a one-item VAS to measure anxiety.  Both were found to be 
reliable and valid.  (Nice study.) 
 
8.  Hawker, et al. (2011) 
 
This article is a general review of pain scales in general.  The first part of the 
article is devoted to the VAS (which the authors call "a continuous scale"; ouch!).  
They have this to say about its reliability and validity: 
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"Reliability. Testïretest reliability has been shown to be good, but higher among 
literate (r = 0.94, P< 0.001) than illiterate patients (r= 0.71, P < 0.001) before and 
after attending a rheumatology outpatient clinic [citation]. 
 
Validity. In the absence of a gold standard for pain, criterion validity cannot be 
evaluated.  For construct validity, in patients with a variety of rheumatic diseases, 
the pain VAS has been shown to be highly correlated with a 5-point verbal 
descriptive scale (ñnil,ò ñmild,ò ñmoderate,òñsevere,ò and ñvery severeò) and a 
numeric rating scale (with response options from ñno painò to ñunbearable 
painò), with correlations ranging from 0.71ï0.78 and.0.62ï0.91, respectively) 
[citation]. The correlation between vertical and horizontal orientations of the VAS 
is 0.99 [citation] "  (page s241) 
 
That's a lot of information packed into two short paragraphs.  One study doesn't 
make for a thorough evaluation of the reliability of a VAS; and as I have indicated 
above, those significance tests aren't appropriate.  The claim about the absence 
of a gold standard is probably warranted.  But I find a correlation of .99 between 
a vertical VAS and a horizontal VAS hard to believe.  (Same people at the same 
sitting?  You can look up the reference if you care.) 
 
9.  Vautier (2011) 
 
Although it starts out with some fine comments about basic considerations for the 
use of the VAS, Vautier's article is a very technical discussion of multiple Visual 
Analog Scales used for the determination of reliability and construct validity in the 
measurement of change.  The references that are cited are excellent. 
 
10.  Franchignoni, Salaffi, and Tesio (2012) 
    
This recent article is a very negative critique of the VAS.  Example: "The VAS 
appears to be a very simple metric ruler, but in fact it's not a true linear ruler from 
either a pragmatic or a theoretical standpoint. " (page 798).  (Right on!)  In a 
couple of indirect references to validity, the authors go on to argue that most 
people can't discriminate among the 101 possible points for a VAS.  They cite  
Miller's (1956) famous 7 + or - 2 rule), and they compare the VAS unfavorably 
with a 7-pont Likert scale. 
 
Are Likert Scales and Visual Analog Scales really different from one another? 
 
In the previous paragraph I referred to 101 points for a VAS and 7 points for an 
LS.  The two approaches differ methodologically only in the number of points 
(choices, categories) from which a respondent makes a selection.  There are 
Visual Analog Scales that aren't really visual, and there are Likert Scales that are 
very visual. An example of the former is the second scale at the beginning of this 
paper.  The only thing "visual" about that is the 100-millimeter line.  As examples 
of the latter, consider the pictorial Oucher  (Beyer, et al., 2005) and the pictorial  
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Defense and Veterans Pain Rating Scale (Pain Management Task Force, 2010) 
which consist of photographs of faces of children (Beyer) or drawings of soldiers 
(Pain Management Task Force) expressing varying degrees of pain.  The Oucher 
has six scale points (pictures) and the DVPRS has six pictures super-imposed 
upon 11 scale points, with the zero picture indicating "no pain", the next two 
pictures associated with mild pain, the fourth associated with moderate pain, and 
the last two associated with severe pain.  Both instruments are actually 
amalgams of Likert-type scales and Visual Analog Scales. 
 
I once had the pleasant experience of co-authoring an article about the Oucher 
with Judy Beyer.  (Our article is cited in theirs.)  The instrument now exists in 
parallel forms for each of four ethnic groups.    
 
Back to the third item at the beginning of this paper 
 
I am not an economist.  I took only the introductory course in college, but I was 
fortunate to have held a bridging fellowship to the program in Public Policy at the 
University of Rochester when I was a faculty member there, and I find the way 
economists look at measurement and statistics problems to be fascinating.  
(Economics is actually not the study of supply and demand.  It is the study of the 
optimization of utility, subject to budget constraints.) 
 
What has all of that to do with Item #3?   Plenty.  If you are serious about 
measuring amount of pain, strength of an attitude, or any other such construct, 
try to do it in a financial context.  The dollar is a great unit of measurement.  And 
how would you assess the reliability and validity?  Easy; use Pearson r for both.  
You might have to make a transformation if the scatter plot between test scores 
and retest scores, or between scores on the scale and scores on the gold 
standard, is non-linear, but that's a small price to pay for a higher level of 
measurement. 
 
Afterthought 
 
Oh, I forgot three other sources.  If you're seriously interested in understanding 
levels of measurement you must start with the classic article by Stevens (1946).  
Next, you need to read Marcus-Roberts and Roberts (1987) regarding why 
traditional statistics are inappropriate for ordinal scales.  Finally, turn to Agresti 
(2010).  This fine book contains all you'll ever need to know about handling 
ordinal scales.  Agresti says little or nothing about validity and reliability per se, 
but since most measures of those characteristics involve correlation coefficients 
of some sort, his suggestions for determining relationships between two ordinal 
variables should be followed. 
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CHAPTER 9:  RATING, RANKING, OR BOTH?  
 
Suppose you wanted to make your own personal evaluations of three different 
flavors of ice cream: chocolate, vanilla, and strawberry. How would you go about 
doing that?  Would you rate each of them on a scale, say from 1 to 9 (where 1 = 
awful and 9 = wonderful)?  Or would you assign rank 1 to the flavor you like best, 
rank 2 to the next best, and rank 3 to the third?  Or would you do both?  
 
What follows is a discussion of the general problem of ratings vs. rankings, when 
you might use one rather than the other, and when you might want to use both.  
 
Terminology and notation 
 
Rating k things on a scale from 1 to w, where w is some convenient positive 
integer, is sometimes called "interactive" measurement.  Ranking k things from 1 
to k is often referred to as "ipsative" measurement.    (See Cattell, 1944 or 
Knapp, 1966 for explanations of those terms.)  The number of  people doing the 
rating or the ranking can be denoted by n. 
 
Advantages and disadvantages of each 
 
Let's go back to the ice cream example, with k = 3, w = 9, and have n = 2 (A and 
B,  where you are A?).  You would like to compare A's evaluations with B's 
evaluations.  Sound simple?  Maybe; but here are some considerations to keep 
in mind: 
 
1.   Suppose A gives ratings of 1, 5, and 9 to chocolate, vanilla, and strawberry, 
respectively; and B gives ratings of 5, 5, and 5, again respectively.  Do they 
agree?  Yes and no.  A's average (mean) rating is the same as B's, but A's 
ratings vary considerably more than B's.  There is also the controversial matter of 
whether or not arithmetic means are even relevant for scales such as this 9-point 
Likert-type ordinal scale. (I have written two papers on the topic...Knapp,1990 
and Knapp, 1993; but the article by Marcus-Roberts & Roberts, 1987, is by far 
the best, in my opinion.) 
 
2.  Suppose A gives chocolate rank 1, vanilla rank 2, and strawberry rank 3.  
Suppose that B does also.  Do they agree?  Again, yes and no.  The three flavors 
are in exactly the same rank order, but A might like all of them a lot and was 
forced to discriminate among them; whereas B might not like any of them, but 
designated chocolate as the "least bad", with vanilla in the middle, and with 
strawberry the worst. 
 
3.  Reference was made above to the relevance of arithmetic means.  If an 
analysis that is more complicated than merely comparing two means is 
contemplated, the situation can get quickly out of hand.  For example, suppose 
that n = 31 (Baskin-Robbins' large number of flavors), w is still 9, but k is now 3 
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(you want to compare A's, B's, and C's evaluations).  Having A, B, and C rate 
each of 31 things on a 9-point scale is doable, albeit tedious.  Asking them to 
rank 31 things from 1 to 31 is an almost impossible task.  (Where would they 
even start?  How could they keep everything straight?)   And comparing three 
evaluators is at least 1.5 times harder than comparing two.  
 
Matters are even worse if sampling is involved.  Suppose that you choose a 
random sample of 7 of the Baskin-Robbins 31 flavors and ask a random sample 
of 3 students out of a class of 50 students to do the rating or ranking, with the 
ultimate objective of generalizing to the population of flavors for the population of 
students.  What descriptive statistics would you use to summarize the sample 
data?  What inferential statistics would you use?  Help! 
 
A real example: Evaluating the presidents 
 
Historians are always studying the accomplishments of the people who have 
served as presidents of the United States, starting with George Washington in 
1789 and continuing up through whoever is presently in office.  [At this writing, in 
2016, Barack Obama is now serving his second four-year term.]  It is also a 
popular pastime for non-historians to make similar evaluations. 
 
Some prototypes of ratings and/or rankings of the various presidents by historical 
scholars are the works of the Schlesingers (1948, 1962, 1997), Lindgren (2000), 
Davis (2012), and Merry (2012).  [The Wikipedia website cites and summarizes 
several others.]  For the purpose of this example I have chosen the evaluations 
obtained by Lindgren for presidents from George Washington to Bill Clinton. 
 
Table 1 contains all of the essential information in his study.  [It is also his Table 
1.]  For this table, n (the number of presidents) is 39, w (the number of scale 
points for the ratings) is 5 (HIGHLY SUPERIOR=5, ABOVE AVERAGE=4, 
AVERAGE=3,  BELOW AVERAGE=2, WELL BELOW AVERAGE=1), and k (the 
number of raters) is 1 (actually averaged across the ratings provided by 78 
scholars; the ratings given by each of the scholars were not provided).  The most 
interesting feature of the table is that it provides both ratings and rankings, with 
double ratings arising from the original scale and the subsequent tiers of 
"greatness".  [Those presidents were first rated on the 5-point scale, then ranked 
from 1 to 39, then ascribed further ratings by the author on a 6-point scale of 
greatness (GREAT, NEAR GREAT, ABOVE AVERAGE, AVERAGE, BELOW 
AVERAGE, AND FAILURE.  Three presidents, Washington, Lincoln, and Franklin 
Roosevelt are almost always said to be in the "GREAT" category.]  Some 
presidents, e.g., William Henry Harrison and James Garfield, were not included 
in Lindgren's study because they served such a short time in office.  



 54 

Table 1 
Ranking of Presidents by Mean Score 
Data Source: October 2000 Survey of Scholars in History, Politics, and Law  
Co-Sponsors: Federalist Society & Wall Street Journal 
 
       Mean Median Std. Dev. 
Great 
1 George Washington     4.92       5        0.27 
2 Abraham Lincoln                                    4.87       5        0.60 
3 Franklin Roosevelt                                 4.67       5        0.75 
 
Near Great 
4 Thomas Jefferson                                  4.25       4        0.71 
5 Theodore Roosevelt               4.22       4        0.71 
6 Andrew Jackson                     3.99       4        0.79 
7 Harry Truman                          3.95       4        0.75 
8 Ronald Reagan                       3.81       4        1.08 
9 Dwight Eisenhower               3.71       4        0.60 
10 James Polk                             3.70       4        0.80 
11 Woodrow Wilson               3.68       4        1.09 
 
Above Average 
12 Grover Cleveland               3.36       3         0.63 
13 John Adams                          3.36       3         0.80 
14 William McKinley               3.33       3         0.62 
15 James Madison                                3.29       3         0.71 
16 James Monroe                          3.27       3         0.60 
17 Lyndon Johnson               3.21      3.5       1.04 
18 John Kennedy                          3.17       3         0.73 
 
Average 
19 William Taft                          3.00       3         0.66 
20 John Quincy Adams                         2.93       3         0.76 
21 George Bush                          2.92       3         0.68 
22 Rutherford Hayes               2.79       3         0.55 
23 Martin Van Buren                                 2.77       3         0.61 
24 William Clinton                                     2.77       3         1.11 
25 Calvin Coolidge                          2.71       3         0.97 
26 Chester Arthur                          2.71       3         0.56 
 
Below Average 
27 Benjamin Harrison               2.62       3         0.54 
28 Gerald Ford                          2.59       3         0.61 
29 Herbert Hoover                          2.53       3         0.87 
30 Jimmy Carter                          2.47       2         0.75 
31 Zachary Taylor                          2.40       2         0.68 
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32 Ulysses Grant                          2.28       2         0.89 
33 Richard Nixon                          2.22       2         1.07 
34 John Tyler                2.03       2         0.72 
35 Millard Fillmore                          1.91       2         0.74 
 
Failure 
36 Andrew Johnson               1.65       1         0.81 
37T Franklin Pierce                          1.58       1         0.68 
37T Warren Harding               1.58       1         0.77 
39 James Buchanan               1.33       1         0.62 
 
One vs. both 
 
From a purely practical perspective, ratings are usually easier to obtain and are 
often sufficient.  The conversion to rankings is essentially automatic by putting 
the ratings in order.  (See above regarding ranking large numbers of things "from 
scratch", without the benefit of prior ratings.)  But there is always the bothersome 
matter of "ties".  (Note the tie in Table 1 between Pierce and Harding for 37th 
place but, curiously, not between VanBuren and Clinton, or between Coolidge 
and Arthur.)  Ties are equally problematic, however, when rankings are used.    
 
Rankings are to be preferred when getting the correlation (not the difference) 
between two variables, e.g., A's rankings and B's rankings, whether the rankings 
are the only data or whether the rankings have been determined by ordering the 
ratings.  That is because from a statistical standpoint the use of the Spearman 
rank correlation coefficient is almost always more defensible than the use of the 
Pearson product-moment correlation coefficient for ordinal data and for non-
linear interval data.   
 
It Is very unusual to see both ratings and rankings used for the same raw data, 
as was the case in the Lindgren study.  It is rather nice, however, to have both 
"relative" (ranking) and "absolute" (rating) information for things being evaluated. 
 
Other recommended reading 
 
If you're interested in finding out more about rating vs. ranking, I suggest that in 
addition to the already-cited sources you read the article by Alwin and Krosnick  
(1985) and the measurement chapter in Richard Lowry's online statistics text. 
   
A final remark 
 
Although ratings are almost always made on an ordinal scale with no zero point, 
researchers should always try to see if it would be possible to use an interval 
scale or a ratio scale instead.  For the ice cream example, rather than ask people 
to rate the flavors on a 9-point scale it might be better to ask how much they'd be 
willing to pay for a chocolate ice cream cone, a vanilla ice cream cone, and a 
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strawberry ice cream cone.  Economists often argue for the use of such "utils" 
when gathering consumer preference data.  [Economics is usually called the 
study of supply and demand.  "The study of the maximization of utility, subject to 
budget constraints" is more indicative of what it's all about.] 
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CHAPTER 10: POLLS 
 
"Poll" is a very strange word.  It has several meanings.  Before an election, e.g., 
for president of the United States, we conduct an opinion "poll" in which we ask 
people for whom they intend to vote.  They then cast their ballots at a "polling" 
place, indicating for whom they actually did vote (that's what counts).  Then after 
they emerge from the "polling" place we conduct an exit "poll" in which we ask 
them for whom they voted. 
 
There are other less familiar definitions of "poll".  One of them has nothing to do 
with elections or opinions: The 21st definition at Dictionary.com is "to cut short or 
cut off the hair, wool, etc., of (an animal); crop; clip; shear".  And there is of 
course the distinction between "telephone poll" and its homonym "telephone 
pole"! 
 
But the primary purpose of this chapter is not to explore the etymology of "poll".  I 
would like to discuss the more interesting (to me, anyhow) matter of how the 
results of before-election opinion polling, votes at the polling places, and exit 
polling agree with one another. 
 
Opinion polls 
 
The most well-known opinion polls are those conducted by George Gallup and 
his colleagues.  The most infamous poll (by Literary Digest) was conducted prior 
to the 1936 presidential election, in which Alfred Landon was projected to defeat 
Franklin Roosevelt, whereas Roosevelt won by a very wide margin.  (A related 
goof was the headline in The Chicago Tribune the morning after the 1948 
presidential election between Thomas E. Dewey and Harry S. Truman that 
proclaimed "DEWEY DEFEATS TRUMAN".  Truman won, and he was pictured 
holding up a copy of that newspaper.) 
 
Opinion polls should be, and sometimes but not always are, based upon a 
representative sample of the population to which the results are to be 
generalized.  The best approach would be to draw what is called a stratified 
random sample whereby the population of interest, e.g., all registered voters in 
the U.S., is broken up into various "strata", e.g. by sex within state, with a simple 
random sample selected from each "stratum" and with the sample sizes 
proportional to the composition of the strata in the population.  That is impossible, 
however, since there doesn't exist in any one place a "sampling frame" (list) of all 
registered voters.  So for practical purposes the sampling is often "multi-stage 
cluster sampling" in which clusters, e.g., standard metropolitan statistical areas 
(SMSAs) are first sampled, with individuals subsequently sampled within each 
sampled cluster. 
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Some opinion polls use "quota sampling" rather than stratified random sampling.  
They are not the same thing.  The former is a much weaker approach, since it 
lacks "randomness". 
 
One of the most troublesome aspects of opinion polling is the matter of non-
response, whether the sampling is random or not.  It's one thing to sample a 
person; it's another thing to get him(her) to respond.  The response rates for 
some of the most highly regarded opinion polls can be as low as 70 percent. 
The response rates for irreputable opinion polls are often as low as 15 or 20 
percent. 
 
One of the least troublesome aspects is sample size.  The lay public find it hard 
to believe that a sample of, say, 2000 people, can possibly reflect the opinions of 
a population of 200,000,000 adults.  There can always be sampling errors, but it 
is the size of the sample, not the size of the "bite" it takes out of the population, 
that is the principal determinant of its defensibility.  In that respect, 2000 out of 
200,000,000 ain't bad! 
 
Actual voting at polling places 
 
Every four years a sample of registered voters goes to a voting booth of some 
sort and casts votes for president of the United States.   Unlike the best of 
opinion polls, however, the sample is always self-selected (nobody else 
determines who is in the sample and who is not).  Furthermore, the votes cast 
are not associated with individual voters, and individual votes are never revealed 
(or at least are not supposed to be revealed, according to election laws).   
 
[An aside:  Political scientists cannot even study contingencies, e.g., of those  
who voted for Candidate A (vs. Candidate B) for president, what percentage 
voted for Candidate Y (vs. Candidate Z) for governor?  If I were a political 
scientist I would find that to be very frustrating.  But they have apparently 
accepted it and haven't done anything to challenge the voting laws.] 
 
Exit polls 
 
Immediately after an election, pollsters are eager to draw a sample of those who 
have just voted and to announce the findings before the actual votes are 
counted.   (The latter can sometimes take days or even weeks.)  As is the case 
for pre-election opinion polls, exit polls should be based upon a random sample 
of actual voters.  But they often are not, and the response rates for such samples 
are even smaller than for pre-election opinion polls.  
 
In addition to the over-all results, e.g., what percentage of exit poll respondents 
claimed to have voted for Candidate A, the results are often broken down by sex, 
age, and other demographic variables, in an attempt to determine how various 
groups voted the way they said they did. 
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Comparison of the results for opinion polls, actual votes, and exit polls 
 
Under the circumstances, the best we can do for a presidential election is to 
compare, for the nation as a whole or for one or more subgroups, the percentage 
who said in a pre-election opinion poll that they were going to vote for Candidate 
A (the ultimate winner) with the percentage of people who actually voted for 
Candidate A and with the percentage of people who said in an exit poll that they 
had voted for Candidate A.  But that is a very difficult statistical problem, primarily 
because the "bases" are usually very different.  The opinion poll sample has 
been drawn (hopefully randomly) from a population of registered voters or likely 
voters; the actual voting sample has not been "drawn" at all, and the exit poll 
sample has been drawn (usually non-randomly) from a population of people who 
have just voted.  As far as I know, nobody has ever carried out such a study, but 
some have come close.  The remainder of this paper will be devoted to a few 
partially successful attempts. 
 
Arnold Thomsen regarding Roosevelt and Landon before and after 
 
In an article entitled "What Voters Think of Candidates Before and After Election"  
that appeared in The Public Opinion Quarterly in 1938, Thomsen wanted to see 
how people's opinions about Roosevelt and Landon differed before the 1936 
election and after it had taken place.  (Exit polls didn't exist then.)  He collected 
data for a sample of 111 people (not randomly sampled) on three separate 
occasions (just before the election; the day after the election; and two weeks 
after the election).  There was a lot of missing data, e.g., some people were 
willing to express their opinions about Roosevelt but not Landon, or vice versa.  
The results were very difficult to interpret, but at least he (Thomsen) tried. 
 
Bev Harris regarding fraudulent touchscreen ballots 
 
In a piece written on the AlterNet website a day after the 2004 presidential 
election, Thom Hartmann claimed that the exit polls showing John Kerry (the 
Democrat) defeating George W. Bush (the Republican) were right and the actual 
election tallies were wrong.  He (Hartmann) referred to an analysis carried out by 
Bev Harris of blackboxvoting.org in which she claimed that the results for 
precincts in Florida that used paper ballots were more valid than touchscreen 
ballots and Kerry should have been declared the winner.  Others disputed that 
claim.  (As you might recall, the matter of who won Florida was adjudicated in the 
courts, with Bush declared the winner.)   Both Hartmann and Harris argued that 
we should always use paper ballots as either the principal determinant or as 
back-up.   
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More on the 2004 presidential election 
 
I downloaded from the internet the following excerpt by a blogger on November 
6, 2004 (four days after the election): "Exit polling led most in the media to 
believe Kerry was headed to an easy victory. Exit polls were notoriously wrong in 
2000 too -- that's why Florida was called incorrectly, too early.... Also, the exit 
polls were often just laughably inaccurate based on earlier normal polls of the 
states. Bush losing Pennsylvania 60-40 and New Hampshire 56-41?  According 
to the exit polls, yes, but, um, sorry, no cookie for you. The race was neck and 
neck in both places as confirmed by a number of pre-election polls -- the exit poll 
is just wrong."  Others claimed that the pre-election polls AND the exit polls were 
both right, but the actual tabulated results were fraudulent. 
 
Analyses tabulated in Wikipedia 
 
I copied the following excerpt from a Wikipedia entry entitled "Historical polling for 
U.S. Presidential elections" 
 

United States presidential election, 2012 

2012 

Month 
Barack Obama 

(D) % 
Mitt Romney 

(R) % 

April 

45% 47% 

49% 43% 

46% 46% 

May 

44% 48% 

47% 46% 

45% 46% 

June 
47% 45% 

48% 43% 

July 

48% 44% 

47% 45% 

46% 46% 

46% 45% 

August 

47% 45% 

45% 47% 

47% 46% 

September 

49% 45% 

50% 43% 

50% 44% 

October 50% 45% 

file://///wiki/United_States_presidential_election,_2012
file://///wiki/Barack_Obama
file://///wiki/Mitt_Romney
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46% 49% 

48% 48% 

48% 47% 

November 49% 46% 

Actual result 51% 47% 

Difference between actual result and final 
poll 

+2% +1% 

 
That table shows for the presidential election in 2012 the over-all discrepancy 
between (an average of) pre-election opinion polls and the actual result as well 
as the trend for the months leading up to that election.  In this case the findings 
were very close to one another.  
 
The whole story of Obama vs. Romney in 2012 as told in exit polls 
 
I couldn't resist copying into this paper the following entire piece from the New 
York Times website that I recently downloaded from the internet (I hope I don't 
get sued): 
 

Sex 

Mr. Obama maintained his 2008 support among women. 
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Race & Ethnicity 

The white vote went to Mr. Romney, mostly by wide margins. But Hispanics and 
Asians moved toward Mr. Obama, continuing their consolidation as Democrats. 
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Age 

Young voters favored Mr. Obama, but less so than in 2008.  
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Income 

Some of the president's firmest support came from low-income groups. 
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Size of Place 

Cities shifted only slightly to Mr. Romney, and continue to be the centerpiece of 
the Obama majority. The suburbs broke back to the Republican side, while towns 
and rural areas solidified as Republican strongholds, more polarized from urban 
dwellers than before. 
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Do You Think the Nationôs Economy Is: 
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Political Party 

The independent vote was very close, but important states like New Hampshire 
tilted toward Mr. Obama. 
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Are You Gay, Lesbian or Bisexual? 
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Obamaôs Job Performance 
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Exit Polls Methodology 

The Election Day polls were based on questionnaires completed by voters as 
they left voting stations throughout the country on Tuesday, supplemented by 
telephone interviews with absentee and early voters. The polls were conducted 
by Edison Research of Somerville, N.J., for the National Election Pool, a 
consortium of ABC News, Associated Press, CBS News, CNN, Fox News and 
NBC News. The national results are based on voters in 350 randomly chosen 



 67 

precincts across the United States, and include absentee voters and early voters 
interviewed by telephone. 

The state results are based on voters in 11 to 50 randomly selected precincts 
across each of 18 states analyzed by The Times. In certain states, some 
interviews were also conducted by telephone with absentee voters and early 
voters. In Colorado all interviews were by telephone and in Arizona the majority 
were. In theory, in 19 cases out of 20, the results from such polls should differ by 
no more than plus or minus 4 percentage points nationally, and 4 to 5 points in 
each state, from what would have been obtained by seeking to interview all 
voters who cast ballots in each of these elections. 

Results based on smaller subgroups, like demographic groupings, have a larger 
potential sampling error. In addition to sampling error, the practical difficulties of 
conducting any survey of voter opinion on Election Day, such as the reluctance 
of some voters to take time to fill out the questionnaire, may introduce other 
sources of error into the poll. 

The Times was assisted in its polling analysis by Ana Maria Arumi of Studio 
Arumi, Barry M. Feinberg of BMF Research & Consulting, Geoffrey D. Feinberg 
of Yale University, David R. Jones of Baruch College-CUNY, Michael R. Kagay 
of Princeton, N.J., Jeffrey W. Ladewig of the University of Connecticut, Helmut 
Norpoth of SUNY-Stony Brook, Annie L. Siegel of New York and Janet L. 
Streicher of Citibank. 

A final note 

If you'd like to read a critique of pre-election polls and don't mind some relatively 
heavy mathematics, I recommend that you read the article entitled "Lies, Damn 
Lies, and Pre-Election Polling" (2009), written by Walsh, Dolfin, and DiNardo, 
which is available for downloading from the internet free of charge. 
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CHAPTER 11:  MINUS VS. DIVIDED BY 

Introduction 

You would like to compare two quantities A and B.  Do you find the difference 
between the quantities or their ratio?  If their difference, which gets subtracted 
from which?  If their ratio, which quantity goes in the numerator and which goes 
in the denominator? 
 
The research literature is somewhat silent regarding all of those questions.  What 
follows is an attempt to at least partially rectify the situation by providing some 
considerations regarding when to focus on A-B, B-A, A/B, or B/A. 
 
Examples 
 
1.  You are interested in the heights of John Doe (70 inches) and his son, Joe 
Doe (35 inches).  Is it the positive difference 70 - 35 = 35, the negative difference 
35 - 70 = -35, the ratio 70/35 = 2, or the ratio 35/70 = 1/2 = .5 that is of primary 
concern? 
 
2.  You are interested in the percentage of smokers in a particular population 
who got lung cancer (10%) and the percentage of non-smokers in that population 
who got lung cancer (2%).  Is it the ñattributable riskò 10% - 2% = 8%, the 
corresponding "attributable risk" 2% - 10% = -8%, the ñrelative riskò ("risk ratio") 
10%/2% = 5, or the corresponding ñrelative riskò 2%/10% =1/5 =.2 that you 
should care about? 
 
3.  You are interested in the probability of drawing a spade from an ordinary deck 
of cards and the probability of not drawing a spade.  Is it 13/52 - 39/52 = -26/52 = 
-1/2 = -.5,  39/52 - 13/52 = 26/52 = 1/2 = .5, (13/52)/(39/52) = 1/3, or 
(39/52)/(13/52) = 3 that  is the best  comparison between those two probabilities? 
 
4.  You are interested in the change from pretest to posttest of an experimental 
group that had a mean of 20 on the pretest and a mean of 30 on the posttest, as 
opposed to a control group that had a mean of 20 on the pretest and a mean of 
10 on the posttest.  Which numbers should you compare, and how should you 
compare them? 
 
Considerations for those examples 
 
1.  The negative difference isn't very useful, other than as an indication of how 
much "catching up" Joe needs to do.  As far as the other three alternatives are 
concerned, it all depends upon what you want to say after you make the 
comparison.  Do you want to say something like "John is 35 inches taller than 
Joe"?  "John is twice as tall as Joe"?  "Joe is half as tall as John"? 
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2.  Again, the negative attributable risk is not very useful.  The positive 
attributable risk is most natural ("Is there a difference in the prevalence of lung 
cancer between smokers and non-smokers?").  The relative risk (or an 
approximation to the relative risk called an "odds ratio") is the overwhelming 
choice of epidemiologists.  They also favor the reporting of relative risks that are 
greater than 1 ("Smokers are five times as likely to get lung cancer") rather than 
those that are less than 1 ("Non-smokers are one-fifth as likely to get lung 
cancer").  One difficulty with relative risks is that if the quantity that goes in the 
denominator is zero you have a serious problem, since you can't divide by zero.  
(A common but unsatisfactory solution to that problem is to call such a ratio 
"infinity".)  Another difficulty with relative risks is that no distinction is made 
between a relative risk for small risks such as 2% and 1%, and for large risks 
such as 60% and 30%. 
 
3.  Both of the difference comparisons would be inappropriate, since it is a bit 
strange to subtract two things that are actually the complements of one another 
(the probability of something plus the probability of not-that-something is always 
equal to 1).  So it comes down to whether you want to talk about the "odds in 
favor of" getting a spade ("1 to 3") or the "odds against" getting a spade ("3 to 
1").  The latter is much more natural.  
 
4.  This very common comparison can get complicated.  You probably don't want 
to calculate the pretest-to-posttest ratio or the posttest-to-pretest ratio for each of 
the two groups, for two reasons: (1) as indicated above, one or more of those 
averages might be equal to zero (because of how the "test" is scored); and (2) 
the scores often do not arise from a ratio scale.  That leaves differences.  But 
what differences?  It would seem best to subtract the mean pretest score from 
the mean posttest score for each group (30 - 20 = 10 for the experimental group 
and 10 - 20 = -10 for the control group) and then to subtract those two 
differences from one another (10 -[-10] = 20, i.e., a "swing'"of  20 points), and 
that is what is usually done. 
 
What some of the literature has to say 
 
I mentioned above that the research literature is "somewhat silent" regarding the 
choice between differences and ratios.  But there are a few very good sources 
regarding the advantages and disadvantages of each.   
 
The earliest reference I could find is an article in Volume 1, Number 1 of the 
Peabody Journal of Education by Sherrod (1923).  In that article he summarized 
a number of ratios that had just been developed, including the familiar mental 
age divided by chronological age, made some comments regarding differences, 
but did not provide any arguments concerning preferences for one vs. the other. 
  
One of the best pieces (in my opinion) is an article that appeared recently on the 
American College of Physicians' website.  The author pointed out that although 
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differences and ratios of percentages are calculated from the same data, 
differences often "feel" smaller than quotients.   
 
Another relevant source is the article that H.P. Tam and I wrote a few years ago 
(Knapp & Tam, 1997) concerning proportions, differences between proportions, 
and ratios of proportions.  (A proportion is just like a percentage, with the decimal 
point moved two places to the left.) 
 
There are also a few good substantive studies in which choices were made, and 
the investigators defended such choices.  For example,  Kruger and Nesse 
(2004) preferred the male-to-female mortality ratio to the difference between 
male and female mortality numbers.  That ratio is methodologically similar to sex 
ratio at birth.  It is reasonably well known that male births are more common than 
female births in just about all cultures.  (In the United States the sex ratio at birth 
is about 1.05, i.e., there are approximately five percent more male births than 
female births, on the average.) 
 
The Global Youth Tobacco Survey Collaborating Group (2003) also chose the 
male-to-female ratio for comparing the tobacco use of boys and girls in the 13-15 
years of age range. 
 
In an interesting "twist", Baron, Neiderhiser, and Gandy (1997) asked samples of 
Blacks and samples of Whites to estimate what the Black-to-White ratio was for 
deaths from various causes, and compared those estimates to the actual ratios 
as provided by the Centers for Disease Control (CDC).  
 
Some general considerations 
 
It all depends upon what the two quantities to be compared are.   
 
1.  Let's first consider situations such as that of Example #1 above, where we 
want to compare a single measurement on a variable with another single 
measurement on that variable.  In that case, the reliability and validity with which 
the variable can be measured are crucial.  You should compare the errors for the 
difference between two measurements with the errors for the ratio of two 
measurements.  The relevant chapters in the college freshman physics 
laboratory manual (of all places) written by Simanek (2005) is especially good for 
a discussion of such errors.  It turns out that the error associated with a 
difference A-B is the sum of the errors for A and B, whereas the error associated 
with a ratio A/B is the difference between the relative errors for A and for B.  (The 
relative error for A is the error in A divided by A, and the relative error for B is the 
error for B divided by B.)  
 
2.  The most common comparison is for two percentages.  If the two percentages 
are independent, i.e., they are not for the same observations or matched pairs of 
observations, the difference between the two is usually to be preferred; but if the 
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percentages are based upon huge numbers of observations in epidemiological 
investigations the ratio of the two is often the better choice, usually with the larger 
percentage in the numerator and the smaller percentage in the denominator.   
 
If the percentages are not independent, e.g., the percentage of people who hold 
a particular attitude at Time 1 compared to the percentage of those same people 
who hold that attitude at Time 2, the difference (usually the Time 2 percentage 
minus the Time 1 percentage, i.e., the change, even if that is negative) is almost 
always to be preferred.  Ratios of non-independent percentages are very difficult 
to handle statistically. 
 
3.  Quotients of probabilities are usually preferred to their differences. 
 
4.  On the other hand, comparisons of means that are not percentages (did you 
know that percentages are special kinds of means, with the only possible 
"scores" 0 and 100?) rarely involve quotients.  As I pointed out in Example #4 
above, there are several differences that might be of interest.  For randomized 
experiments for which there is no pretest, subtracting the mean posttest score for 
the control group from the mean posttest score for the experimental group is 
most natural and most conventional.  For pretest/posttest designs the "difference 
between the differences" or the difference between "adjusted" posttest means 
(via the analysis of covariance, for example) is the comparison of choice. 
 
5.  There are all sorts of change measures to be found in the literature, e.g., the 
difference between the mean score at Time 2 and the mean score at Time 1 
divided by the mean score at Time 1 (which would provide an indication of the 
percent "improvement").  Many of those measures have sparked a considerable 
amount of controversy in the methodological literature, and the choice between 
expressing change as a difference or as a ratio is largely idiosyncratic. 
 
The absolute value of differences 
 
It is fairly common for people to concentrate on the absolute value of a 
difference, in addition to, or instead of, the "raw" difference.  The absolute value 
of the difference between A and B, usually denoted as |A-B|, which is the same 
as |B-A|, is especially relevant when the discrepancy between the two is of 
interest, irrespective of which is greater. 
 
Statistical inference 
 
The foregoing discussion tacitly assumed that the data in hand are for a full 
population (even if the "N" is very small).  If the data are for a random sample of 
a population, the preference between a difference statistic and a ratio statistic 
often depends upon the existence and/or complexity of the sampling distributions 
for such statistics.  For example, the sampling distribution for a difference 
between two independent percentages is well known and straightforward (either 
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the normal distribution or the chi-square distribution can be used) whereas the 
sampling distribution for the odds ratio is a real mess. 
 
The essential matter to be taken into account is whether you get the same 
inferences for the difference and the ratio approaches.  If the difference between 
two independent percentages is statistically significant at the .05 level, say, but 
their ratio is not, you have a real problem. 
 
I carried out both analyses (with the help of Richard Lowry's nice VassarStats 
Statistical Computation website) for the following example taken from the 
StatPrimer website: 
 
First % = 11/25 = 44.00; second % = 3/34 = 8.82; difference = 35.18; ratio = 4.99 
 
The 95% confidence interval for the population difference is 10.36 to 56.91; the 
95% confidence interval for the ratio is 1.55 to 16.05.  0 is not in the 95% 
confidence interval for the difference, so that difference is statistically significant 
at the .05 level.  1 is not in the 95% confidence interval for the ratio, so that is 
also statistically significant at the .05 level.   
 
However, if some of those numbers are tweaked a bit I think it would be possible 
to have one significant and the other not, at the same alpha level.  Try it. 
  
A controversial example 
 
It is very common during a presidential election campaign to hear on TV 
something like this:  ñIn the most recent opinion poll, Smith is leading Jones by 
seven points.ò  What is meant by a ñpointò?  Is that information important?  If so, 
can the difference be tested for statistical significance and/or can a confidence 
interval be constructed around it?    
 
The answer to the first question is easy.  A ñpointò is a percentage. For example, 
46% of those polled might have favored Smith and 39% might have favored 
Jones, a difference of seven ñpointsò or seven percent.  Since those two numbers 
donôt add to 100, there might be other candidates in the race, some of those 
polled had no preferences, or both.  [Iôve never heard anybody refer to the ratio 
of the 46 to the 39.  Have you?] 
 
It is the second question that has sparked considerable controversy.  Some 
people (like me) donôt think the difference is important; what matters is the actual 
% support for each of the candidates.  (Furthermore, the two percentages are not 
independent, since their sum plus the sum of the percentages for other 
candidates plus the percentage of people who expressed no preferences must 
add to 100.) Other people think it is very important, not only for opinion polls but 
also for things like the difference between the percentage of people in a sample 
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who have blue eyes and the percentage of people in that same sample who have 
green eyes (see Simon, 2004), and other contexts. 
 
Alas (for me), differences between percentages calculated on the same scale for 
the same sample can be tested for statistical significance, and confidence 
intervals for such differences can be determined.  See Kish (1965) and Scott and 
Seber (1983). 
 
Financial example: "The Rule of 72" 
 
[My former colleague and good friend at OSU, Dick Shumway, referred me to this 
rule that his father, a banker, first brought to his attention.] 
 
How many years does it take for your money to double if it is invested at an  
interest rate of r? 
 
It obviously depends upon what r is, and whether the compounding is daily, 
weekly, monthly, annually, or continuously.  I will consider here only the 
"compounded annually" case.  The Rule of 72 postulates that a good 
approximation to the answer to the money-doubling question can be obtained by 
dividing the % interest rate into 72.  For interest rates of 6% vs. 9%, for instance, 
the rule would claim that your money would double in 72/6 = 12 years and 72/9 = 
8 years, respectively.  But how good is that rule?  The mathematics for the 
"exact" answer with which to compare the approximation as indicated by the Rule 
of 72 is a bit complicated, but consider the following table for various reasonable 
interest rates (both the exact answers and the approximations were obtained by 
using the calculator that is accessible at that marvelous website, 
www.moneychimp.com , which also provides the underlying mathematics): 
 
r(%) Exact  Approximation 
 
  3 23.45  24 
  4 17.67  18 
  5 14.21  14.40 
  6 11.90  12 
  7 10.24  10.29 
  8   9.01   9 
  9   8.04   8 
10   7.27   7.20 
11   6.64   6.55 
12   6.12   6 
... 
18   4.19   4 
 
How good is the rule?  In evaluating its "goodness" should we take the difference 
between exact and approximation (by subtracting which from which?) or should 
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you divide one by the other (with which in the numerator and with which in the 
denominator?)?  Those are both very difficult questions to answer, because the 
approximation is an over-estimate for interest rates of 3% to 7% (by decreasingly 
small discrepancies) and is an under-estimate for interest rates of 8% and above 
(by increasingly large discrepancies). 
 
Do you see how difficult the choice of minus vs. divided by is? 
 
Ordinal scales 
 
It should go without saying, but I'll say it anyhow:  For ordinal scales, e.g., the 
popular Likert-type scales, NEITHER a difference NOR a quotient is justified.  
Such scales don't have units that can be added, subtracted, multiplied, or 
divided. 
 
Additional reading 
 
If you would like to pursue other sources for discussions of differences and ratios 
(and their sampling distributions), especially if you're interested in the comparison 
of percentages, the epidemiological literature is your best bet, e.g., the Rothman 
and Greenland (1998) text. 
 
For an interesting discussion of differences vs. ratios in the context of learning 
disabilities, see Kavale (2003). 
 
I mentioned reliability above (in conjunction with a comparison between two 
single measurements on the same scale).  If you would like to see how that plays 
a role in the interpretation of various statistics, please visit my website 
(www.tomswebpage.net) and download any or all of my book, The reliability of 
measuring instruments (free of charge). 
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CHAPTER 12:  CHANGE 

Introduction 

Mary spelled correctly 3 words out of 6 on Monday and 5 words out of 6 on 
Wednesday. How should we measure the change in her performance? 

Several years ago Cronbach and Furby (1970) argued that we shouldn't; i.e., we 
don't even need the concept of change. An extreme position? Of course, but read 
their article sometime and see what you think about it. 

Why not just subtract the 3 from the 5 and get a change of two words? That's 
what most people would do. Or how about subtracting the percentage 
equivalents, 50% from 83.3%, and get a change of 33.3%? But...might it not be 
better to divide the 5 by the 3 and get 1.67, i.e., a change of 67%? [Something 
that starts out simple can get complicated very fast.] 

Does the context matter? What went on between Monday and Wednesday? Was 
she part of a study in which some experimental treatment designed to improve 
spelling ability was administered? Or did she just get two days older? 

Would it matter if the 3 were her attitude toward spelling on Monday and the 5 
were her attitude toward spelling on Wednesday, both on a five-point Likert-type 
scale, where 1=hate, 2=dislike, 3=no opinion, 4=like, and 5=love? 

Would it matter if it were only one word, e.g., antidisestablishmentarianism, and 
she spelled it incorrectly on Monday but spelled it correctly on Wednesday? 

These problems regarding change are illustrative of what now follows. 

A little history 

Interest in the concept of change and its measurement dates back at least as 
long ago as Davies (1900). But it wasn't until much later, with the publication of 
the book edited by Harris (1963), that researchers in the social sciences started 
to debate the advantages and the disadvantages of various ways of measuring 
change. Thereafter hundreds of articles were written on the topic, including many 
of the sources cited in this chapter. 

"Gain scores" 

The above example of Mary's difference of two words is what educators and 
psychologists call a "gain score", with the Time 1 score subtracted from the Time 
2 score. [If the difference is negative it's a loss, rather than a gain, but I've never 
heard the term "loss scores".] Such scores have been at the heart of one of the 
most heated controversies in the measurement literature. Why? 
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1. The two scores might not be on exactly the same scale. It is possible that her 
score of 3 out of 6 was on Form A of the spelling test and her score of 5 out of 6 
was on Form B of the spelling test, with Form B consisting of different words, and 
the two forms were not perfectly comparable (equivalent, "parallel"). It might even 
have been desirable to use different forms on the two occasions, in order to 
reduce practice effect or mere "parroting back" at Time 2 of the spellings (correct 
or incorrect) at Time 1. 

2. Mary herself and/or some other characteristics of the spelling test might have 
changed between Monday and Wednesday, especially if there were some sort of 
intervention between the two days. In order to get a "pure" measure of the 
change in her performance we need to assume that both of the testing conditions 
were the same. In a randomized experiment all bets regarding the direct 
relevance of classical test theory should be off if there is a pretest and a posttest 
to serve as indicators of a treatment effect, because the experimental treatment 
could affect the posttest mean AND the posttest variance AND the posttest 
reliability AND the correlation between pretest and posttest. 

3. Gain scores are said by some measurement experts (e.g., O'Connor, 1972; 
Linn & Slinde, 1977; Humphreys, 1996) to be very unreliable, and by other 
measurement experts (e.g., Zimmerman & Williams, 1982; Williams & 
Zimmerman, 1996; Collins, 1996) to not be. Like the debate concerning the use 
of traditional interval-level statistics for ordinal scales, this controversy is unlikely 
ever to be resolved. I got myself embroiled in it many years ago (see Knapp, 
1980; Williams & Zimmerman, 1984; Knapp, 1984). [I also got myself involved in 
the ordinal vs. interval controversy (Knapp, 1990, 1993).] 

The problem is that if the instrument used to measure spelling ability (Were the 
words dictated? Was it a multiple-choice test of the discrimination between the 
correct spelling and one or more incorrect spellings?) is unreliable, Mary's "true 
score" on both Monday and Wednesday might have been 4 (she "deserved" a 4 
both times), and the 3 and the 5 were both measurement errors attributable to 
"chance", and the difference of two words was not a true gain at all. 

Some other attempts at measuring change 

Given that gain scores might not be the best way to measure change, there have 
been numerous suggestions for improving things. In the Introduction (see above) 
I already mentioned the possibility of dividing the second score by the first score 
rather than subtracting the first score from the second score. This has never 
caught on, for some good reasons and some not-so-good reasons. The strongest 
arguments against dividing instead of subtracting are: (1) it only makes sense for 
ratio scales (a 5 for "love" divided by a 3 for "no opinion" is bizarre, for instance); 
and (2) if the score in the denominator is zero, the quotient is undefined. [If you 
are unfamiliar with the distinctions among nominal, ordinal, interval, and ratio 
scales, read the classic article by Stevens (1946).] The strongest argument in 
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favor of the use of quotients rather than differences is that the measurement 
error could be smaller. See, for example, the manual by Bell(1999) regarding 
measurement uncertainty and how the uncertainty "propagates" via subtraction 
and division. It is available free of charge on the internet. 

Other methodologists have advocated the use of "modified" change scores (raw 
change divided by possible change) or "residualized" change (the actual score at 
Time 2 minus the Time 2 score that is predicted from the Time 1 score in the 
regression of Time 2 score on Time 1 score). Both of these, and other variations 
on simple change, are beyond the scope of the present paper, but I have 
summarized some of their features in my reliability book (Knapp, 2015). 

The measurement of change in the physical sciences vs. the social sciences 

Some physical scientists wonder what the fuss is all about. If you're interested in 
John's weight of 250 pounds in January of one year and his weight of 200 
pounds in January of the following year, for example, nothing other than 
subtracting the 250 from the 200 to get a loss of 50 pounds makes any sense, 
does it? Well, yes and no. You could still have the problem of scale difference 
(the scale in the doctor's office at Time 1 and the scale in John's home at Time 
2?) and the problem of whether the raw change (the 50 pounds) is the best way 
to operationalize the change. Losing 50 pounds from 250 to 200 in a year is one 
thing, and might actually be beneficial. Losing 50 pounds from 150 to 100 in a 
year is something else, and might be disastrous. [I recently lost ten pounds from 
150 to 140 and I was very concerned. (I am 5'11" tall.) I have since gained back 
five of those pounds, but am still not at my desired "fighting weight", so to speak.] 

Measuring change using ordinal scales 

I pointed out above that it wouldn't make sense to get the ratio of a second 
ordinal measure to a first ordinal measure in order to measure change from Time 
1 to Time 2. It's equally wrong to take the difference, but people do it all the time. 
Wakita, Ueshima, & Noguchi (2012) even wrote a long article devoted to the 
matter of the influence of the number of scale categories on the psychological 
distances between the categories of a Likert-type scale. In their article concerned 
with the comparison of the arithmetic means of two groups using an ordinal 
scale, Marcus-Roberts and Roberts (1987) showed that Group I's mean could be 
higher than Group II's mean on the original version of an ordinal scale, but Group 
II's mean could be higher than Group I's mean on a perfectly defensible 
transformation of the scale points from the original version to another version. 
(They used as an example a grading scale of 1, 2, 3, 4, and 5 vs. a grading scale 
of 30, 40, 65, 75, and 100.) The matter of subtraction is meaningless for ordinal 
measurement. 
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Measuring change using dichotomies 

Dichotomies such as male & female, yes & no, and right & wrong play a special 
role in science in general and statistics in particular. The numbers 1 and 0 are 
most often used to denote the two categories of a dichotomy. Variables treated 
that way are called "dummy" variables. For example, we might "code" male=1 
and female =0 (not male); yes=1 and no=0 (not yes); and right=1 and wrong=0 
(not right). As far as change is considered, the only permutations of 1 and 0 on 
two measuring occasions are (1,1), e.g., right both times; (1,0), e g., right at Time 
1 and wrong at Time 2; (0,1), e.g., wrong at Time 1 and right at Time 2; and (0,0), 
e.g., wrong both times. The same permutations are also the only possibilities for 
a yes,no dichotomy. There are even fewer possibilities for the male, female 
variable, but sex change is well beyond the scope of this paper! 

Covariance F vs. gain score t 

For a pretest & posttest randomized experiment, Cronbach and Furby (1970) 
suggested the use of the analysis of covariance rather than a t test of the mean 
gain in the experimental group vs. the mean gain in the control group as one way 
of avoiding the concept of change. The research question becomes "What is the 
effect of the treatment on the posttest over and above what is predictable from 
the pretest?" as opposed to "What is the effect of the treatment on the change 
from pretest to posttest?" In our recent paper, Bill Schafer and I (Knapp & 
Schafer, 2009) actually provided a way to convert from one analysis to the other. 

Measurement error 

In the foregoing sections I have made occasional references to measurement 
error that might produce an obtained score that is different from the true score. 
Are measurement errors inevitable? If so, how are they best handled? In an 
interesting article (his presidential address to the National Council on 
Measurement in Education), Kane (2011) pointed out that in everyday situations 
such as sports results (e.g., a golfer shooting a 72 on one day and a 69 on the 
next day; a baseball team losing one day and winning the next day), we don't 
worry about measurement error. (Did the golfer deserve a 70 on both occasions? 
Did the baseball team possibly deserve to win the first time and lose the second 
time?). Perhaps we ought to. 

What we should do 

That brings me to share with you what I think we should do about measuring 
change: 

1. Start by setting up two columns. Column A is headed Time 1 and Column B is 
headed Time 2. [Sounds like a Chinese menu.] 
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2. Enter the data of concern in the appropriate columns, with the maximum 
possible score (not the maximum obtained score) on both occasions at the top 
and the rest of the scores listed in lockstep order beneath. For Mary's spelling 
test scores, the 3 would go in Column A and the 5 would go in Column B. For n 
people who attempted to spell antidisestablishmentarianism on two occasions, all 
of the 1's would be entered first, followed by all of the 0's, in the respective 
columns. 

3. Draw lines connecting score in Column A with the corresponding score in 
Column B for each person. There would be only one (diagonal) line for Mary's 3 
and her 5. For the n people trying to spell antidisestablishmentarianism, there 
would be n lines, some (perhaps all; perhaps none) horizontal, some (perhaps 
all; perhaps none) diagonal. If all of the lines are horizontal, there is no change 
for anyone. If all of the lines are diagonal and crossed, there is a lot of change 
going on. See Figure 1 for a hypothetical example of change from pretest to 
posttest for 18 people, almost all of whom changed from Time1 to Time 2 (only 
one of the lines is horizontal). I am grateful to Dave Kenny for permission to 
reprint that diagram, which is Figure 1.7 in the book co-authored by Campbell 
and Kenny (1999). [A similar figure, Figure 3-11 in Stanley (1964), antedated the 
figure in Campbell & Kenny. He (Stanley) was interested in the relative 
relationship between two variables, and not in change per se. He referred to 
parallel lines, whether horizontal or not, as indicative of perfect correlation.] 

 

Figure 1:  Some data for 18 hypothetical people. 
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Ties are always a problem (there are several ties in Figure 1, some at Time 1 
and some at Time 2), especially when connecting a dichotomous observation (1 
or 0) at Time 1 with a dichotomous observation at Time 2 and there are lots of 
ties. The best way to cope with this is to impose some sort of arbitrary (but not 
capricious) ordering of the tied observations, e.g., by I.D. number. In Figure 1, for 
instance, there is no particular reason for the two people tied at a score of 18 at 
Time 1 to have the line going to the score of 17 at Time 2 be above the line going 
to the score of 15 at Time 2. [It doesn't really matter in this case, because they 
both changed, one "losing" one point and the other "losing" two points.] 

4. Either quit right there and interpret the results accordingly (Figure 1 is actually 
an excellent "descriptive statistic" for summarizing the change from pretest to 
posttest for those 18 people) or proceed to the next step. 

5. Calculate an over-all measure of change. What measure? Aye, there's the rub. 
Intuitively it should be a function of the number of horizontal lines and the extent 
to which the lines cross. For ordinal and interval measurements the slant of the 
diagonal lines might also be of interest (with lines slanting upward indicative of 
"gain" and with lines slanting downward indicative of "loss"). But what function? 
Let me take a stab at it, using the data in Figure 1: 

The percentage of horizontal lines (no change) in that figure is equal to 1 out of 
18, or 5.6%. [Unless your eyes are better than mine, it's a bit hard to find the 
horizontal line for the 15th person, who "went" from 13 to 13, but there it is.] The 
percentage of upward slanting lines (gains), if I've counted correctly, is equal to 6 
out of 18, or 33.3%. The percentage of downward slanting lines (losses) is equal 
to 11 out of 18, or 61.1%. A person who cares about over-all change for this 
dataset, and for most such datasets, is likely to be interested in one or more of 
those percentages. [I love percentages.  See Chapter 15.] 

Statistical inference from sample to population 

Up to now I've said nothing about sampling (people, items, etc.). You have to 
have a defensible statistic before you can determine its sampling distribution and, 
in turn, talk about significance tests or confidence intervals. If the statistic is a 
percentage, its sampling distribution (binomial) is well known, as is its 
approximation (normal) for large samples and for sample percentages that are 
not close to either 0 or 100. The formulas for testing hypotheses about population 
percentages and for getting confidence intervals for population percentages are 
usually expressed in terms of proportions rather than percentages, but the 
conversion from percentage to proportion is easy (drop the % sign and move the 
decimal point two places to the left). Caution: concentrate on only one 
percentage. For the Campbell and Kenny data, for instance, don't test 
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hypotheses for all of the 5.6%, the 33.3%, and the 61.1%, since that would be 
redundant (they are not independent; they add to 100). 

If you wanted to go a little further, you could carry out McNemar's (1947) test of 
the statistical significance of dichotomous change, which involves setting up a 
2x2 contingency table and concentrating on the frequencies in the "off-
diagonal"(1,0) and (0,1) cells, where, for example, (1,0) indicates a change from 
yes to no, and (0,1) indicates a change from no to yes. But I wouldn't bother. Any 
significance test or any confidence interval assumes that the sample has been 
drawn at random, and you know how rare that is! 

Some closing remarks, and a few more references 

I'm with Cronbach and Furby. Forget about the various methods for measuring 
change that have been suggested by various people. But if you would like to find 
out more about what some experts say about the measurement of change, I 
recommend the article by Rogosa, Brandt, and Zimowski (1982), which reads 
very well [if you avoid some of the complicated mathematics]; and the book by 
Hedeker and Gibbons (2006). That book was cited in an interesting May 10, 
2007 post on the Daily Kos website entitled "Statistics 101: Measuring change". 

Most of the research on the measurement of change has been devoted to the 
determination of whether or not, or to what extent, change has taken place. 
There are a few researchers, however, who turn the problem around by claiming 
in certain situations that change HAS taken place and the problem is to 
determine if a particular measuring instrument is "sensitive", or "responsive", or 
has the capacity to detect such change. If you care about that (I don't), you might 
want to read the letter to the editor of Physical Therapy by Fritz (1999), the 
response to that letter, and/or some of the articles cited in the exchange. 
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CHAPTER 13:  SEPARATE VARIABLES VS. COMPOSITES 
 
Introduction 
 
I recently downloaded from the internet a table of Body Mass Index (BMI; weight 
in kilograms divided by the square of height in meters) as a function of height in 
inches and weight in pounds.  I was struck by the fact that the same BMI can be 
obtained by a wide variety of corresponding heights and weights.  For example, a 
BMI of 25 (which is just barely into the ñoverweightò category) is associated with 
measurements ranging from a height of 58 inches and a weight of 119 pounds to 
a height of 76 inches and a weight of 205 pounds.  Although all of those 
combinations produce a BMI of 25, the ñpicturesò one gets of the persons who 
have those heights and weights are vastly different.  Donôt you lose a lot of 
valuable information by creating the composite? 
  
Iôm not the first person who has raised such concerns about BMIs.  (See, for 
example, Dietz & Bellizi, 1999.)  But I might be one of the few who are equally 
concerned about other composite measurements such as [cigarette]pack-years.   
Peto (2012a) made a strong case against the use of pack-years rather than 
packs per day and years of smoking as separate variables.  There was also a 
critique of Peto (2012a) by Lubin & Caporaso (2012). followed by Petoôs reply 
(2012b). 
 
In what follows I would like to  discuss some of the advantages and some of the 
disadvantages (both practical and technical) of research uses of separate 
variables vs. their composites. 
 
Advantages of separate variables (disadvantages of composites) 
 
The principal advantage of separate variables is the greater amount of 
information conveyed.  As indicated above, the use of actual height and actual 
weight in a study of obesity, for example, better operationalizes body build than 
does the BMI composite. 
 
A second advantage is that most people are more familiar with heights measured 
in inches (or in feet and inches) and weights measured in pounds than with the 
complicated expression for BMI.  (Americans, especially non-scientist Americans, 
are also not familiar with heights in meters and weights in kilograms.) 
 
A third advantage is that the frequency distributions for height separately and for 
weight separately tend to conform rather well to the traditional bell-shaped 
(ñnormalò) form.  The frequency distribution of BMI in some populations is 
decidedly non-normal.  See Larson (2006) for an example. 
 
There is the related matter of the sampling distributions of statistics (e.g., means, 
variances, correlation coefficients) for heights, weights, and BMI.  Although all 
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can be complicated, the sampling distributions for BMI-based statistics are much 
more so. 
 
A final advantage of separate variables concerns measurement error.  Formulas 
for the standard error of measurement for height in inches and the standard error 
of measurement for weight in pounds are straightforward and easy to interpret.  
For non-linear composites such as BMI, measurement error propagates in a very 
complex manner.   
 
As illustrations of the propagation of measurement error, consider both body 
surface area (BSA) and body mass index (BMI).  One fomula for body surface 
area (DuBois & DuBois, 1916) is the constant .20247 times height (in meters) 
raised to the .725 power times weight (in kilograms) raised to the .425 power.  
Body mass index (the Quetelet index), as indicated above, is equal to weight (in 
kilograms) divided by the square of height (in meters).  Suppose you would like 
to get 95% confidence intervals for true body surface area and true body mass 
index for a hypothetical person, Mary Smith.  You measure her height and get 60 
inches; you measure her weight and get 120 pounds.  Her obtained body surface 
area is 1.50 square meters and her obtained body mass index is 23.4 kilograms 
per square meter.  Your height measuring instrument is said to have a standard 
error of measurement of 4 inches (that's awful) and your weight measuring 
instrument is said to have a standard error of measurement of 5 pounds (that's 
also awful); so the 95% confidence interval for Mary's true  height is 60 ± 2(4) or 
from 52 inches to 68 inches, and the 95% confidence interval for Mary's true 
weight is 120 ± 2(5) or from 110 pounds to 130 pounds. 
 
According to Taylor and Kuyatt (1994), if Y (the quantity you're interested in) is 
equal to any constant A times the product of X1 raised to the power a and X2 
raised to the power b, then you can determine the "uncertainty" (using their term 
for standard error of measurement) associated with Y by the following formula: 
 
(Uncertainty of Y) / ɯYɯ =   A [a2(SEX1 / IX1I )2 + b2(SEX2 / IX2I )2 ] .5 
 
where IYI is the absolute value of Y, SEX1 is the standard error of measurement 
for X1 , IX1I is the absolute value of X1 , SEX2 is the standard error of 
measurement for X2 , and IX2I is the absolute value of X2 , if both X1 and X2 are 
not equal to zero. 
 
For body surface area, if height = X1 and weight = X2 , then A  = .20247, a  = 
.725, and b  = .425.  For body mass index, if again height = X1 and weight = X2 , 
then A  = 1, a  = 1, and b  =  -2.  Substituting in the standard error (uncertainty) 
formula for Y and laying off two standard errors around the obtained BSA and the 
obtained BMI, we have 
 
Body surface area:   1.50 ± 2 (.05) = 1.40 to 1.60 
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Body mass index:   23.5 ± 2 (3.3)  =  16.9 to 30.1 
 
Body surface area is often used as the basis for determining the appropriate 
dose of medication to be prescribed (BSA is multiplied by dose per square meter 
to get the desired dose), so you can see from this admittedly extreme example 
that reasonable limits for "the true required dose" can vary dramatically, with 
possible serious medical complications for a dose that might be either too large 
or too small. 

 
Body mass index is often used for various recommended weight therapies, and 
since the lower limit of the 95% confidence interval for Mary's true BMI is in the 
"underweight" range and the upper limit is in the "obese" range, the extremely 
high standard errors of measurement for both height and weight had a very 
serious effect on BMI.  (Thank goodness these are hypothetical data for very 
poor measuring instruments.) 
 
Advantages of composites (disadvantages of separate variables) 
 
The principal advantage of a composite is that it produces a single variable rather 
than having to deal with two or more variables.  Again taking BMI as an example, 
if we wanted to use body build to predict morbidity or mortality, a simple 
regression analysis would suffice, where X = BMI and Y = some indicator such 
as age at onset of disease or age at death.  For height and weight separately you 
would have two predictors X1 = height and X2 = weight, and a multiple regression 
analysis would be needed. 
 
Another advantage is that composites like BMI and pack-years are so ingrained 
in the research literature that any suggestion of ñde-compositingò them is likely to 
invoke concern by journal editors, reviewers, and readers of journals in which 
those composites have been mainstays. 
 
A third advantage of composites, especially linear composites, is that they 
usually have greater validity and reliability than the individual components that 
comprise them.  A simple example is a test of spelling ability.  If a spelling test  
consists of just one item, it is likely to be less valid  and less reliable than a total 
score based upon two or more items (Rudner, 2001).  But see below for a 
counter-example. 
 
A final advantage arises in the context of multiple dependent variables, highly 
correlated with one another, and with none designated as the ñprimaryò outcome 
variable.  Creating a composite of such variables rather than treating them 
separately can lead to higher power and obviates the necessity for any sort of 
Bonferroni-type correction.  See Freemantle, Calvert, Wood, Eastaugh, and 
Griffin (2003) and Song, Lin, Ward, and Fine (2013). 
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Pack-years 
 
I also recently downloaded from the internet a chart that defined pack-years 
(number of packs of cigarettes smoked per day times the number of years of 
smoking cigarettes) and gave the following example: 
 
(70cigarettes/day ÷20 cigarettes/pack) X 10years = 35pack-years 
(35cigarettes/day ÷20 cigarettes/pack) X 20years = 35pack-years 
(20cigarettes/day ÷20 cigarettes/pack) X 35years = 35pack-years 
 
That doesnôt make sense (to me, anyhow).  Those are three very different 
smoking histories, yet the ñscoreò is the same for each. 
 
Other composites 
 
1.  Socio-economic status (SES) 
 
There is perhaps no better example than SES to illustrate some of the 
advantages and disadvantages alluded to above of the use of separate variables 
as opposed to various composites (theyôre usually called ñindexesò or ñindicesò).  
For a thorough discussion of the operationalization of SES for the National 
Assessment of Educational Progress project, see Cowan, et al. (n.d.). 
  
2.  Achievement tests 
 
What bothers me most is the concept of a ñtotal scoreò on an achievement test, 
e.g., of spelling ability, whereby two people can get the same total score yet not 
answer correctly (and incorrectly) any of the same items.  Consider the following 
data: 

 
Person Item 1  Item 2  Total score (= number right) 
A  right (1) wrong (0)  1 
B  wrong (0) right  (1)  1 
 
Does that bother you?  Two diametrically opposite performances, same score? 
 
The best solution to this problem is either to never determine a total score or to 
construct test items that form whatôs called a Guttman Scale (see Guttman, 1944, 
and Abdi, 2010).  For a perfect Guttman Scale, if you know a personôs total score 
you can determine which items the person answered correctly (or, for attitude 
scales, which items were ñendorsedò in the positive direction).  Everybody with 
the same total score must have responded in the same way to every item.  
Perfect Guttman Scales are very rare, but some measuring instruments, e.g, 
well-constructed tests of racial prejudice, come very close. 
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How much does it matter?  An example 
 
A few years ago, Freedman, et al. (2006) investigated the prediction of mortality 
from both obesity and cigarette-smoking history, using data from the U.S. 
Radiologic Technologists (USRT) Study.  I was able to gain access to the raw 
data for a random sample of 200 of the males in that study.  Here is what I found 
for age at death as the dependent variable: 
 
Regression of deathage on height and weight:  r-square = 2.1% 
 
Regression of deathage on bmi:  r-square = 0.1%  
 
Regression of deathage on packs and years:  r-square = 16.2% 
 
Regression of deathage on pack-years:  r-square = 6.4% 
 
For these data, age at death is ñmore predictableò from height and weight 
separately than from bmi (but not by much; both r-squares are very small).  And 
age at death is ñmore predictableò from packs and years separately than from 
pack-years (by almost 10%). 
 
A final note 
 
If you measure a personôs height and a personôs weight, or ask him(her) to self-
report both, there is a handy-dandy device (an abdominal computed tomographic 
image) for determining his(her) BMI and BSA in one full swoop.  See the article 
by Geraghty and Boone (2003.) 
  
Acknowledgment 
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P.S.:  This just in:  There is a variable named egg-yolk years (see Spence, 
Jenkins, & Davignon, 2012; Lucan, 2013; Olver, Thomas, & Hamilton, 2013; and 
Spence, Jenkins, & Davignon, 2013).  It is defined as the number of egg yolks 
consumed per week multiplied by the number of years in which such 
consumption took place.  What will they think up next? 
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CHAPTER 14: THE USE OF MULTIPLE-CHOICE QUESTIONS IN HEALTH 
SCIENCE RESEARCH 
 

Introduction 

Suppose you were interested in knowledge of blood types by public health, 
medical, or nursing students.  Which of the following questions would you use? 
 
1. What are the designations of the various blood types? 

 
2. How many blood types are there? 

 

3. How many blood types are there? 

2 

4 

6 

8 

4.  Which of the following is not a blood type? 

      A 

      B 

      C 

The first question asks the respondent to actually specify all of the blood types 

(A+, A-, B+, B-, O+, O-, AB+, and AB-); it is an ñopen-endedò item, requiring the 

respondent to supply the answer.  The second question asks the respondent to 

specify only the number of blood types; it is also open-ended.  The third question 

is a four-option multiple-choice item, requiring the respondent to merely select 

from the four options the correct number of blood types. The fourth question is a 

three-option multiple-choice item, requiring the respondent to select one of the 

three options that is NOT a blood type. 

The question you decide to use should depend upon whether you are interested 

in finding out if the respondent can provide the names of the blood types, can 

provide only the number of types, select the number of types, or select an 

incorrect type.  What are some of the advantages and some of the 

disadvantages of open-ended and multiple-choice questions?  What are some 

situations for which open-ended questions (OEQs) should be used?  What are 

some situations for which multiple-choice questions (MCQs) should be used? If 

you use MCQs, how many options should there be for each question?    
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A brief history of multiple-choice testing 

Multiple-choice tests are a relatively recent phenomenon.  It has been alleged 

that the first multiple-choice test was developed by Frederick J. Kelly in 1914 

(see Davidson, 2011).  But it wasnôt until three years later that tests consisting of 

only multiple-choice questions were used extensively, primarily in conjunction 

with military requirements for recruiting purposes during World War I, e.g., the 

Army Alpha examination (see Yerkes,  1921).  The Educational Testing Service 

(ETS) was established a few years later and devised several multiple-choice 

tests.  Almost all of them are still used today in that same format (see the partially 

tongue-in-cheek article by Owen, 1983), although an essay section was later 

added.   

There have been many criticisms of multiple-choice testing; see, for example, 

Hoffmann (1962) and Barzun (1988).  Most of such criticisms are concerned with 

the frequent superficiality of MCQs and their susceptibility to chance success. 

What has this to do with research in the health sciences? 

Veloski, et al. (1999) put it very well.  Patients donôt give their primary care 

provider a list of possible choices for whatôs wrong with them and ask the 

provider to pick one.  (Nor do primary care providers give their patients such a list 

and ask them to pick one.)   Healthcare researchers and educators shouldnôt do 

so either, Veloski, et al. claim. 

Some advantages of MCQs 

1.  The scoring is objective.  It can even be done by electronic scanning devices. 

2.  They are relatively easy for respondents to reply to. 

3.  They have usually been found to be more reliable than OEQs. 

Some disadvantages of MCQs 

1.   They are often superficial, requiring only recognition rather than recall. 

2.   They are accordingly often less valid than OEQs. 

3.   They can be answered correctly by guessing, especially when the number of 

options is few. 

How many options per question? 

This is one of the most debated problems, but fortunately one of the most 

studied.  In an early very careful methodological investigation, Ruch and  

Stoddard (1925) compared five-option, three-option, two-option, and true-false (a 

variation of two-option) multiple-choice questions with open-ended questions and 

with one another.  They administered tests of 50 such items to 562 students in 

the senior classes of 24 high schools in Iowa.  Each student took the open-ended 



 94 

version on one day, and on the next day one of the other four types. 137 took the 

five-option version; 134 took the three-option version; 135 took the two-option 

version; and 133 took the true-false version.  (There were some missing data).  

The findings were interesting and some of them were surprising.  As expected, 

the average scores on the open-ended version were uniformly lower than the 

average scores on all of the other versions, due to the probability of chance 

success; but the average score for the true-false version was lower than the 

average score for the two-option version, despite the fact that chance success is 

the same for both.  The reliability (internal consistency) was highest for the open-

ended version, next highest for five-option, then two-option, with three-option and 

true-false the lowest.  The  three-option version was notably erratic with respect 

to the various comparisons. 

Many years later, Rodriguez (2005) carried out a meta-analysis of the empirical 

literature regarding the number of options per multiple-choice question and found 

that having three options per question was optimal with respect to a number of 

factors, e.g., testing time and content coverage.  Delgado and Prieto (1998) had 

come to the same conclusion.  Dehnad, Nasser, and Hosseini (2014) compared 

three-option with four-option MCQs and echoed the preference for three.  MCQs 

having four or five options are far more common, however. 

An interesting example in the health sciences research literature 

Several studies have been carried out regarding the use of the "Sniffin' Sticks" 

test to measure the ability of people to detect different kinds of odors.  There are 

many versions of the test, but the one I would like to concentrate on here is 

discussed by Adams, Kern, et al. (2017).  It is based upon the five-item multiple-

choice version of the test recommended by Mueller and Renner (2006) that uses 

only rose, leather, fish, orange, and peppermint as the odors to be identified.  

They found for a sample of approximately 3000 older adults (ages 57 to 85) that 

those who had difficulty identifying various odors (especially peppermint) were 

about twice as likely to develop dementia five years later than those who did not. 

Mueller, Grassinger, et al. (2006) found very little difference between Sniffin' 

Sticks test results when self-administered and when administered by 

professionals. 

Gudziol and Thomas (2009) were concerned about the "distractors" that are used 

in the Sniffin' Sticks test items.  They recommended that the incorrect choices be 

more distinguishable from the correct choice. 

The use of MCQs when there are no correct answers 

The foregoing discussion assumed that the purpose of using MCQs was 

cognitive, i.e., the researcher was interested in respondents' knowledge.  In the 

health sciences MCQs are actually used more often in an affective context where 
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attitudes are of primary concern.  The most frequently used type of MCQ is the 

so-called Likert scale (due to Likert, 1941).  Likert scales are special kinds of 

MCQs.  The options are typically Strongly Agree, Agree, Undecided, Disagree, 

and Strongly Disagree, but the number of options per item can vary from one 

study to another.  A total score calculated across a number of Likert scales is 

often reported. 

Various adaptations of Likert scales have also been used to measure constructs 

other than attitudes.  An example of this is the controversial PACE randomized 

clinical trial study (White, Goldsmith, et al., 2011).  Two of the scales used in that 

study were: 

Chalder Fatigue Questionnaire.  Fatigue was self-assessed using an 11-

situations form with four options regarding the experiencing of fatigue under each 

situation: ñbetter than usualò (0), ñno worse than usualò (1), ñworse than usualò 

(2), and ñmuch worse than usualò (3). 

Clinical Global Impression scale (CGI).  The scale was administered by a trained 

clinician, with options ranging from 1 to 7 regarding: ñCompared to the patientôs 

condition at admission to the project, this patientôs condition is: 

1=very much improved since the initiation of treatment 

2=much improved 

3=minimally improved 

4=no change from baseline (the initiation of treatment) 

5=minimally worse 

6= much worse 

7=very much worse since the initiation of treatment 

My personal opinion 

If the measurement situation is truly a matter of choice and the options are both 

mutually exclusive and exhaustive, then MCQs are fine.  (I always liked the high 

school mathematics "always, sometimes, or never" multiple choice questions.  

Those options are mutually exclusive and exhaustive.)  Consider first the blood 

type questions.  If the researcher is an educator who is testing the knowledge of 

students in healthcare courses and cares only if the students can recognize how 

many types there are, the natural way to ask the question is to use an eight-

option (1,2,3,4,5,6,7,8) multiple-choice item.  If the question asked of a 

participant in a research study is "What is your blood type?", a multiple-choice 

item with the eight options A+,A-,B+,B-,O+,O-,B+,AB+, AB- is optimal.  There are 

no other blood types.   
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Now consider the Sniffin' Sticks odor identification items.  Althought there are 

several versions of the test, all of them present the identification task as an MCQ.  

The four options for Pen #9 (garlic) are onion, sauerkraut, garlic, and carrot. 

Gudziol and Hummel (2009) wouldn't like that item.  Three of the odors, including 

the correct answer, are close enough to make the item almost too discriminating.  

I don't like the item either, but for a different reason.  I think all odor identification 

items should be OEQs where the respondent must supply the answer, not MCQs 

where the respondent only has to pick it out from a list of choices. 

I also don't like MCQs that ask the respondent to choose the option that doesn't 

fit with the others (see Question #4 at the beginning of this paper) and those that 

include "all of the above" and/or "none of the above" as options. 

And I really don't like Likert scales in any form for any purpose.  Unlike typical 

MCQs, they are ordinal scales rather than nominal scales, such that "Strongly 

Agree" is greater agreement than "Agree", for example, but how much more is 

indeterminate.  The options for a typical MCQ might be ordered for ease of 

presentation (see, for example, the 2,4,6,8 blood types question, above) but the 

order is not taken into account. 
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CHAPTER 15:  A, B, or O? 
 
 
No; this is not a paper about blood type.  It's about what people do and should do 
when they are asked to respond to a true-false or other type of two-alternatives 
test item.  Should they choose A (e.g., true), B (e.g., false), or O (omit the item)?  
You'd be surprised how often such a dilemma arises.  What follows is an attempt 
to describe the problem and to discuss several ways to cope with it, using lots of 
examples. 
 
Consider first a typical true-false item such as the following: 
"The capital of California is Los Angeles.   True or False?" 
 
Suppose this item has been administered to two middle school students, Mary 
and John.  Mary knows what the capital of California is (Sacramento), responds 
"False", and gets a score of 1 on the item.  John doesn't know what the capital is, 
but he thinks Los Angeles could be.  (It's far and away the largest city in the 
state.)  How should he respond?  Should he guess "True" or should he omit the 
item?  It depends. 
 
First of all, it depends upon whether or not there is a correction (penalty) for 
guessing wrongly.  If the test directions say to guess if you don't know the 
answer, and there is no penalty for guessing, John might as well go ahead and 
guess.  He'd be wrong this time (his score would be 0 on that item), but he might 
be right "by chance" some other time.  And if he omitted the item he'd still get a 
score of 0, so he has nothing to lose. 
 
If there is a penalty for guessing wrongly, and if the scoring formula is the usual 
one for true-false items, R - W, where R is the number of right answers and W is 
the number of wrong answers, he should omit it.  To do otherwise by responding 
"True" would result in a score of 0 - 1 = -1, which is less than 0. 
 
It also depends upon whether the respondent is a risk taker or is risk averse.  
John might be a risk taker, so no matter what the directions are and no matter 
whether or not there is a penalty for guessing wrongly, he might guess "True". 
 
The previous example was a cognitive item that had a right answer ("False").  
The problem of A, B, or O is the same for affective or opinion items that don't 
have right answers, such as the following: 
"God exists.  Yes or No?" 
 
There is no right or wrong answer to this item, but the respondent has the same 
number (three) of choices:  Say "Yes"; say "No"; or omit the item.  If the 
respondent does believe in the existence of God and says "Yes", he(she) is 
telling the truth.  If the respondent does not believe in the existence of God and 
says "No", he(she) is also telling the truth.  If the respondent does believe in the 
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existence of God but says "No", or if the respondent doesn't believe in the 
existence of God but says "Yes", he(she) is not telling the truth.  If the score on 
the item is an indicator of belief in God, the believer who says "Yes" will get a 
score of 1, as will the non-believer who says "Yes".  All others who respond to 
the item will get scores of 0. 
 
How about the omitters for this belief in God item?  Hmmm.  They can't get either 
0 or 1.  Their data, or absence of data, have to be treated as "missing".  How?  
The usual reasons are that they inadvertently left out the item or they refuse to 
respond because they find such items to be personally offensive and/or 
"nobody's business". I shall return later to the matter of handling missing data.  
But now on to the situation of two (or more) items. 
 
Suppose the test (of knowledge of capital cities) consists of two items: 
"The capital of California is Los Angeles.  True or False?" 
"The capital of Pennsylvania is Harrisburg.  True or False?" 
 
The correct answer to the first question is "False"; the correct answer to the 
second question is "True".  Possible total scores on the test could range from -2 
to 2.  A person gets a score of -2 if both answers are wrong and there is a 
correction for guessing; a score of -1 for no rights, one wrong, and one omit; a 
score of 0 for one right and one wrong, or for two omits; a score of 1 for one right 
and one omit; and a score of 2 for two rights.  Getting complicated, isn't it? 
 
For the general case of k true-false or other two-alternatives items, where k is 
greater than or equal to 3, the problem is the same (A, B, or O for each item). 
 
Going back to the matter of missing data, there is a huge literature regarding 
different kinds of "missingness", how to try to prevent it, and what to do about it 
when it happens.  The classic reference is the book by Little and Rubin, 
Statistical analysis with missing data, the most recent edition of which is 2002.  
They claim that there are three kinds of missing data:  missing completely at 
random (MCAR); missing at random (MAR); and missing not at random (MNAR).  
They define each kind, and discuss what to do about them.  If you care about 
such distinctions, please read their book.  (Warning: It's not for the 
mathematically faint of heart.)  I personally don't care.  I even argue that data are 
almost always missing not at random, because people don't use randomizing 
devices in order to determine whether or not to provide information.  Do they? 
 
All of which brings me to the general problem of response or non-response 
(omission) for two-alternatives test items.  Should people use some sorts of 
randomizing devices (coins, dice, decks of playing cards) when confronted with  
A, B, or O cognitive situations where they don't know the correct answers and 
with A, B, or O affective situations where they might not want to "stick their necks 
out"?  If they don't and they omit one or more items I refuse to call those 
omissions MCAR or MAR.  They're all MNAR. 
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How about items that have three or more alternatives?  Consider, for example, 
the following five-alternatives counterparts to the previous two-alternatives 
examples: 
 
"What is the capital of California? 
A.  Los Angeles 
B.  Sacramento 
C.  San Diego 
D.  San Francisco 
E.  San Jose " 
 
"God exists. 
A.  Strongly agree 
B.  Agree 
C.  Undecided 
D.  Disagree 
E.  Strongly disagree" 
 
Although both of those items are more complicated and present a greater 
dilemma, the arguments regarding whether or not to respond, and how to 
respond, are the same.  The paper by Roberts (year?) is an excellent source for 
deciding whether or not to guess on multiple-choice tests.  (The second of the 
two items is recognizable as a Likert-type attitude item, but is a special case of a 
multiple-choice item.  Exercise for the reader:  Is responding C to that item the 
same as omitting it?  Why or why not?) 
 
What do I recommend for a k-alternatives item?  If you know the answer (or hold 
the desired position), respond (correctly).  If you don't, and if there is no 
correction for guessing, cognitively or affectively reduce the number of 
reasonable alternatives to something less than k, and make a guess from the 
remaining alternatives, using a randomizing device.  If you don't know the answer 
(or hold the desired position), and if there is a correction for guessing, omit the 
item. 
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 CHAPTER 16:  THE UNIT JUSTIFIES THE MEAN 

 
Introduction 
 
How should we think about the mean?  Let me count the ways: 
 
1.  It is the sum of the measurements divided by the number of measurements. 
 
2.  It is the amount that would be allotted to each observation if the 
measurements were re-distributed equally. 
 
3.  It is the fulcrum (the point at which the measurements would balance). 
 
4.  It is the point for which the sum of the deviations around it is equal to zero. 
 
5.  It is the point for which the sum of the squared deviations around it is a 
minimum. 
 
6.   It need not be one of the actual measurements. 
 
7.  It is not necessarily in or near the center of a frequency distribution. 
 
8.  It is easy to calculate (often easier than the median, even for computers).  
 
9.  It is the first moment around the origin. 
 
10. It requires a unit of measurement; i.e., you have to be able to say the mean 
"what". 
 
I would like to take as a point of departure the first and the last of these matters 
and proceed from there. 
 
Definition 
 
Everybody knows what a mean is.  You've been calculating them all of your lives.  
What do you do?  You add up all of the measurements and divide by the number 
of measurements.  You probably called that "the average", but if you've taken a 
statistics course you discovered that there are different kinds of averages.  There 
are even different kinds of means (arithmetic, geometric, harmonic), but it is only 
the arithmetic mean that will be of concern in this chapter, since it is so often 
referred to as "the mean". 
 
The mean what 
 
The mean always comes out in the same units that are used in the scale that 
produced the measurements in the first place.  If the measurements are in 
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inches, the mean is in inches; if the measurements are in pounds, the mean is in 
pounds; if the measurements are in dollars, the mean is in dollars; etc. 
 
Therefore, the mean is "meaningful" for interval-level and ratio-level variables, 
but it is "meaningless" for ordinal variables, as Marcus-Roberts and Roberts 
(1987) so carefully pointed out.  Consider the typical Likert-type scale for 
measuring attitudes.  It usually consists of five categories: strongly disagree, 
disagree, no opinion, agree, and strongly agree (or similar verbal equivalents).  
Those five categories are most frequently assigned the numbers 1,2,3,4,and 5, 
respectively. But you can't say 1 what, 2 what, 3 what, 4 what, or 5 what.   
 
The other eight "meanings of the mean" all flow from its definition and the 
requirement of a unit of measurement.  Let me take them in turn. 
 
Re-distribution 
 
This property is what Watier, Lamontagne, and Chartier (2011) call (humorously 
but accurately) "The Socialist Conceptualization".  The simplest context is 
financial.  If the mean income of all of the employees of a particular company is 
equal to x dollars, x is the salary each would receive if the total amount of money 
paid out in salaries were distributed equally to the employees.  (That is unlikely to 
ever happen.)  A mean height of x inches is more difficult to conceptualize, 
because we rarely think about a total number of inches that could be re-
distributed, but x would be the height of everybody in the group, be it sample or 
population, if they were all of the same height.  A mean weight of x pounds is 
easier to think of than a mean height of x inches, since pounds accumulate faster 
than inches do (as anyone on a diet will attest). 
 
Fulcrum (or center of gravity) 
 
Watier, et al.  (2011) call this property, naturally enough, "The Fulcrum 
Conceptualization".  Think of a see-saw on a playground.  (I used to call them 
teeter-totters.)  If children of various weights were to sit on one side or the other 
of the see-saw board, the mean weight would be the weight where the see-saw 
would balance (the board would be parallel to the ground). 
 
The sum of the positive and negative deviations is equal to zero 
 
This is actually an alternative conceptualization to the previous one.  If you 
subtract the mean weight from the weight of each child and add up those 
differences ("deviations") you get zero, again an indication of a balancing point. 
 
The sum of the squared deviations is a minimum 
 
This is a non-intuitive (to most of us) property of the mean, but it's correct.  If you 
take any measurement in a set of measurements other than the mean and 
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calculate the sum of the squared deviations from it, you always get a larger 
number.  (Watier, et al., 2011, call this "The Least Squares Conceptualization".) 
Try it sometime, with a small set of numbers such as 1,2,3, and 4. 
 
It doesn't have to be one of the actual measurements 
 
This is obvious for the case of a seriously bimodal frequency distribution, where 
only two different measurements have been obtained, say a and b.  If there is the 
same numbers of a's as b's then the mean is equal to (a+b)/2.  But even if there 
is not the same number of a's as b's the mean is not equal to either of them. 
 
It doesn't have to be near the center of the distribution 
 
This property follows from the previous one, or vice versa.  The mean is often 
called an indicator of "the central tendency" of a frequency distribution, but that is 
often a misnomer.  The median, by definition, must be in the center, but the 
mean need only be greater than the smallest measurement and less than the 
largest measurement. 
 
 It is easy to calculate 
 
Compare what it is that you need to do in order to get a mean with what you 
need to do in order to get a median.  If you have very few measurements the 
amount of labor involved is approximately the same:  Add (n-1 times) and divide 
(once); or sort and pick out.  But if you have many measurements it is a pain in 
the neck to calculate a median, even for a computer (do they have necks?).  
Think about it.  Suppose you had to write a computer program that would 
calculate a median.  The measurements are stored somewhere and have to be  
compared with one another in order to put them in order of magnitude.  And 
there's that annoying matter of an odd number vs. an even number of 
measurements. 
 
To get a mean you accumulate everything and carry out one division.  Nice. 
 
The first moment 
 
Karl Pearson, the famous British statistician, developed a very useful taxonomy 
of properties of a frequency distribution.  They are as follows: 
 
The first moment (around the origin).  This is what you get when you add up all of 
the measurements and divide by the number of them.  It is the (arithmetic) mean.   
The term "moment" comes from physics and has to do with a force around a 
certain point..  
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The first moment around the mean.  This is what you get when you subtract the 
mean from each of the measurements, add up those "deviations", and divide by 
the number of them.  It is always equal to zero, as explained above. 
 
The second moment around the mean.  This is what you get when you take 
those deviations, square them, add up the squared deviations, and divide by the 
number of them.  It is called the variance, and it is an indicator of the "spread" of 
the measurements around their mean, in squared units.  Its square root is the 
standard deviation, which is in the original units. 
 
The third moment around the mean.  This is what you get when you take the 
deviations, cube them (i.e., raise them to the third power), add them up, divide by 
the number of deviations, and divide that by the cube of the standard deviation.  
It provides an indicator of the degree of symmetry or asymmetry ("skewness") of 
a distribution. 
 
The fourth moment around the mean.  This is what you get when you take the 
deviations, raise them to the fourth power, add them up, divide by the number of 
them, and divide that by the fourth power of the standard deviation.  It provides 
an indicator of the extent of the kurtosis ("peakedness") of a distribution. 
 
What about nominal variables in general and dichotomies in particular? 
  
I hope you are now convinced that the mean is OK for interval variables and ratio 
variables, but not OK for ordinal variables.  In 1946 the psychologist S.S. 
Stevens claimed that there were four kinds of variables, not three.  The fourth 
kind is nominal, i.e., a variable that is amenable to categorization but not very 
much else.  Surely if the mean is inappropriate for ordinal variables it must be 
inappropriate for nominal variables?  Well, yes and no. 
 
Let's take the "yes" part first.  If you are concerned with a variable such as blood 
type, there is no defensible unit of measurement like an inch, a pound, or a 
dollar.  There are eight different blood types (A+, A-, B+, B-, AB+, AB-, O+, and 
O-).  No matter how many of each you have, you can't determine the mean blood 
type.  Likewise for a variable such as religious affiliation.  There are lots of 
categories (Catholic, Protestant, Jewish, Islamic,...,None), but it wouldn't make 
any sense to assign the numbers 1,2,3,4,..., k to the various categories, calculate 
the mean, and report it as something like 2.97. 
 
Now for the "no" part.  For a dichotomous nominal variable such as sex (male, 
female) or treatment (experimental, control), it is perfectly appropriate (alas) to 
CALCULATE a mean, but you have to be careful about how you INTERPRET it.  
The key is the concept of a "dummy" variable.  Consider, for example, the sex 
variable.  You can call all of the males "1" (they are male) and all of the females 
"0" (they are not).  Suppose you have a small study in which there are five males 
and ten females.  The "mean sex" (sounds strange, doesn't it?) is equal to the 
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sum of all of the measurements (5) divided by the number of measurements (15), 
or .333.  That's not .333 "anythings", so there is still no unit of measurement, but 
the .333 can be interpreted as the PROPORTION of participants who are male 
(the 1's).  It can be converted into a percentage by multiplying by 100 and affixing 
a % sign, but that wouldn't provide a unit of measurement either. 
 
There is an old saying that "there is an exception to every rule".  This is one of 
them. 
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CHAPTER 17: THE MEDIAN SHOULD BE THE MESSAGE 
 
Introduction 
 
In one of his most poignant essays, the American paleontologist Stephen Jay 
Gould (1985) argued against a fixation on the median amount of life remaining 
(eight months) for people who suffer from mesothelioma, a metastasis from 
which he died 17 years later.  He appealed to the frequency distribution of that 
variable, which is positively skewed, and hoped he would find himself far out in 
the right-hand tail (which he did).  The title of his essay was "The median is not 
the message", a play upon the famous quote by Marshall McLuhan (1964) that 
"The medium is the message". 
 
Gould's anti-median argument was based upon the distinction between a 
summary measure (the median) and the distribution to which it applies.  In what 
follows I would like to present a pro-median argument, not because I favor the 
sole reliance on a single summary measure but because in my opinion it is the 
best we have.  I shall also point out some of its weaknesses and necessary 
modifications, especially for ordinal variables for which there is no unit of 
measurement.  Thus the title of this chapter. 
 
The usual discussion in statistics textbooks 
   
Almost every statistics textbook includes a section or an entire chapter on the 
advantages and disadvantages of various measures of "central tendency".  The 
emphasis is most often placed upon the (arithmetic) mean, the median, and the 
mode, although attention is sometimes given to the geometric mean and the 
harmonic mean.  The mean is usually preferred for continuous variables that are 
normally or near-normally distributed, largely because the mathematical 
statisticians know so much about the normal distribution and students in statistics 
courses have been calculating means all of their lives (having called them 
òaverages").  The median is a better indicator of "averageness" for variables that 
are highly skewed, e.g., income.  [In his textbook, Pezzullo (2013) rightly 
contends that of the three the median is the only one that must be near the 
center of the distribution.]  The mode is often denied any serious consideration, 
except for distributions that have two or more peaks.  (Geometric means and/or 
harmonic means are of interest only in some of the physical sciences.) 
 
The very best case for the median: Likert-type scales 
 
In 1932 the American psychologist Rensis Likert (pronounced "lick-ert", not "like-
ert") suggested the use of 5-point or 7-point scales for measuring attitudes, with 
the 5-point version being far and away the more popular... even today.  The 
usual verbal labels are (1) Strongly disagree; (2) Disagree; (3) Undecided 
(neutral, no opinion); (4) Agree; and (5) Strongly agree.  Each person is given a 
statement such as "Marijuana should be legalized" and is asked to provide the 
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response that best represents his(her) opinion.  There is a huge literature on 
Likert-type scales in which various aspects of their use are hotly debated, with 
the bases for controversy being matters such as "Why not an even number of 
scale points?"; "Are they interval scales or ordinal scales?"; and "What kinds of 
statistics are appropriate for analyzing data obtained for such scales?"  It is to the 
last of these questions that I would now like to turn. 
 
My personal opinion is that the median, and only the median, should be used to 
summarize the data for Likert-type scales, and there are some problems with 
that.  Consider, for example, responses such as the following for six persons on 
a 5-point scale: 3, 3, 3, 4, 5, 5.  What is the median of those numbers?  Most 
authors of statistics textbooks would say 3.5 (the mean of the two middle 
numbers 3 and 4).  I strongly disagree (please forgive the lame attempt at 
humor), for two very important reasons: calculating a mean for an ordinal scale is 
not appropriate (they have no unit of measurement); and 3.5 is not one of the 
scale points, so it doesn't make sense.  Further embellishing on this second 
reason, I go even further by arguing that numbers should not be used for such 
scales; letters are both necessary and sufficient.  (See the following chapter.) 
The response choices should be A (not 1), B (not 2), C (not 3), D (not 4), and E 
(not 5); i.e., the data are C, C, C, D, E, E.  What is their median?  They don't 
have one.  But it's perfectly OK to claim that the median is undefined for that 
dataset.  It doesn't have a mode either...or has two modes (a major mode of C 
and a minor mode of E).  It also has no mean (even if appropriate, which it isn't, 
since you can't find the mean of a set of letters). 
 
Academic grades and "Grade point averages (GPAs)" 
 
Speaking of A, B, C, D, and E brings me to the matter of how academic grades 
are assigned and summarized.  In most American high schools and colleges an 
A is given 4 points, a B is given 3 points, a C is given 2 points, a D is given 1 
point, and an E (sometimes F rather than E) is given 0 points.   Pluses and 
minuses are often awarded, with half a point usually added or subtracted.  For 
example, a B- would be given 2.5 points, as would a C+, although some graders 
would assign a few more points to a B- than to a C+.  And to summarize a 
student's achievement over the span of a quarter, a semester, a year, or an 
entire program of studies, such grades (the "points") are added together and 
divided by the number of courses taken, with or without first weighting each by 
the associated number of credit hours.  That is a terrible system, as explained by 
Chansky (1964) several years ago.  Here are some of its weaknesses: 
 
a.  Grade in course is an ordinal variable, much like a Likert-type scale.  A grade 
point is a totally arbitrary entity.  Unlike a dollar, a year, an inch, or a pound, a 
point is not an actual unit of measurement.  You can't say "4 what", for example. 
 
b. When pooling across individual grades it is inappropriate to get an average 
(arithmetic mean), for the same reason. 
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c.  Even if it were defensible to do so (find the mean of the grades), the median 
of a person's grades (a letter, not a number) is much more reflective of his(her) 
typical achievement than the mean of such grades, irrespective of their 
distribution. 
 
Statistical inferences for measures of central tendency 
 
The arithmetic mean is also preferred as far as availability of methods for testing 
the statistical significance of a sample mean or putting a confidence interval 
around it are concerned.  Its standard error ("sigma over the square root of n") is 
well-known and easily applied to practical problems such as the estimation of the 
mean height of a population of adult males, as long as the distribution of heights 
is normal or the sample size is large enough to invoke the Central Limit Theorem.  
Formulas for the standard error of the median are not readily available in most 
statistics textbooks.  However, many years ago Walsh (1949) showed that there 
are methods for testing hypotheses about medians under certain reasonable 
conditions. 
 
But there's more.  Since for a normal distribution the mean, median, and mode 
are all equal to one another, if you know, or can assume, that the population 
distribution is normal, an inference for a population mean (based upon either a 
significance test or a confidence interval) automatically provides an inference for 
the population median and the population mode. 
 
Some nonparametric tests for medians 
 
The Sign Test 
 
The sign test has a number of different applications.  Here I shall consider the 
test of a hypothesis that a population median is equal to a particular value.  As an 
example, consider the following artificial data on page 124 of the 1986 Minitab 
Reference Manual: 
 
0,50,56,72,80,80,80,99,101,110,110,110,120,140,150,180,201,210,220,240,290, 
309,320,325,400,500,507 (sample median = 144) 
 
Minitab provides methods for testing a hypothesis about a population median and 
for putting a confidence interval around the sample median.  For the above 
example, the null hypothesis that the population median = 115 (allegedly the 
current standard) against the alternative hypothesis that the population median is 
greater than 115 cannot be rejected at the .05 level (one-tailed test), despite the 
fact that 144 is considerably greater than 115.  Minitab can also carry out two-
tailed tests and approximate two-sided 95% confidence intervals.  For those 
same data an interval from 110 to 210 would correspond to 93.9% confidence, 
and an interval from 101 to 220 would correspond to 97.6%.  See pp. 124-125 of 
the 1986 manual for the details.   
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The Kolmogorov-Smirnov Test 
 
The versatile but seldom used Kolmogorov-Smirnov (K-S) test for two 
independent samples might be an excellent choice for testing the significance of 
the difference between two sample medians, especially if the maximum 
difference between the two cumulative relative frequency distributions happens 
to fall at or near their medians.  Consider the following example, taken from 
Goodman (1954): 
 
Sample 1:  1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5   (n1 = 15; median = 4) 
Sample 2:  0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 5   (n2 = 15; median = 2) 
 
The frequency distributions for Sample 1 are: 
 
Value  Freq.  Rel. Freq.  Cum. Freq. Cum. Rel. Freq. 
 
0   0  0/15 =  0    0   0/15 =   0  
1   1  1/15 =   .067     1   1/15 =    .067 
2   4  4/15 =   .267    5   5/15 =    .333 
3   0  0/15 =  0    5   5/15 =    .333 
4   4  4/15 =   .267    9   9/15 =    .600 
5   6  6/15 =   .400  15  15/15 = 1.000 
 
The corresponding frequency distributions for Sample 2 are: 
 
Value  Freq.  Rel. Freq.  Cum. Freq. Cum. Rel. Freq. 
 
0  4  4/15 =  .267   4   4/15 =    .267 
1  2  2/15 =  .133   6   6/15 =    .400 
2  4  4/15 =  .267  10  10/15 =   .667 
3  2  2/15 =  .133  12  12/15 =   .800 
4  0  0/15 =  0  12  12/15 =   .800 
5  3  3/15 =  .200  15  15/15 = 1.000 
 
The test statistic for the K-S test is the largest difference, D, between 
corresponding cumulative relative frequencies for the two samples.  For this 
example the largest difference is for scale value 3, for which D = .800 - .333 = 
.467.  How likely is such a difference to be attributable to chance?  Using the 
appropriate formula and/or table and/or computerized routine, the corresponding 
p-value is .051 (two-tailed).  If the pre-specified level of significance, Ŭ, is .05 and 
the alternative hypothesis is non-directional, the null hypothesis of no difference 
between the two population distributions cannot be rejected.  
 
There are also procedures for constructing confidence intervals around D.  See 
Sheskin (2011) for the details.  And for more on the K-S test, see Chapter 28 of 
this book.  
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The Mann-Whitney Test 
 
Buthmann (2008a) claimed that the Mann-Whitney (M-W) test, sometimes called 
the Wilcoxon test, is fine for testing the difference between medians.  The 
observations are rank-ordered irrespective of group designation, and the 
difference between the mean rank for Sample 1 and the mean rank for Sample 2 
is tested for statistical significance, which is alleged to constitute a test of the 
difference between the medians of the two samples.  Hart (2001) and Campbell 
(2006) both contend that the matter is a bit complicated, because the shapes of 
the distributions also have to be taken into account.   
 
Mood's Median Test 
 
In a highly technical article, Mood (1954) discussed the relative asymptotic 
efficiency of several non-parametric tests for comparing two independent 
samples.  Included among them was The Median Test, which he and his 
colleague had developed a few years before that (Brown & Mood, 1951).  He 
showed that it generally had lower power than most other non-parametric 
approaches such as Mann-Whitney.  Despite his acknowledgment of low power 
the test continued to be used for several years and was designated as Mood's 
Median Test.  More recently Freidlin and Gastwirth (2000) argued that Mood's 
Median Test should no longer be used in statistical applications.  [See also 
Buthmann (2008b).] 
 
I prefer the K-S Test. 
 
One more (and last?) weakness of the median 
 
Suppose you have to write a computer program for calculating the mean and the 
median of a set of data.  The mean is easier, because all it entails is the 
summation of n numbers and one division by n at the end.  Summation goes very 
fast with computers and no other decisions need to be made.  The median is 
more complicated.  The computer program must first sort the data and then make 
several comparisons with the data [2n of them, according to Bent & John (1985)], 
to say nothing of resolving the dilemma of an odd number of numbers vs. an 
even number of numbers.  As the data "come in", e,g., the 3,3,3,4,5,5 of the 
above example, some sort of algorithm must be created to produce "the median".  
[See the article by Tibshirani (2008) for a faster way of calculating the median.] 
 
Fortunately, there already exist computer programs for calculating the median.  
Unfortunately, all of them [as far as I know] take the mean of the middle two 
numbers as the median for an even number of observations. 
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The order of the mean, median, and mode in a positively skewed distribution 
 
The authors of some statistics textbooks claim that for a skewed-to-the-right 
distribution the mode is always less than the median, and the median is always 
less than the mean.  [For a left-skewed distribution they are said to be always in 
the reverse order.] As von Hippel (2005) and Lesser (2005) explained, that is not 
true ["always" is too strong; "usually" is much better].  von Hippel gave an 
example of a positively skewed distribution for which there were so many 
observations at the median that there was not an equal number of observations 
on either side of it, resulting in the mean being less than the median for positive 
skew.  Lesser gave a simpler example, for the binomial sampling distribution with 
p = .10 and n = 10, which is also positively skewed and for which the mean is 
also less than the median.  
 
Reprise:  How about between-group comparisons for Likert-type ordinal scales? 
 
Can we use medians to compare a group of three people whose responses for a 
5-point ordinal scale are ABC [median = B] with a group of three people whose 
responses are CDE [median = D], both descriptively and inferentially?  Let's see 
how we might proceed. 
 
Consider a relatively simple case for a small finite population for which the 
population size is five.  The two sample medians are obviously not the same.  
The first median of B represents an over-all level of disagreement; the second 
median of D represents an over-all level of agreement.  Should we subtract the 
two (D - B) to get C?  No, that would be awful.  Addition and subtraction are not 
defensible for ordinal scales, and even if they were, a resolution of C [undecided] 
wouldn't make any sense.  If the two groups were random samples, putting a 
confidence interval around that difference would be even worse. 
 
Testing the significance of the "difference" between the two medians, but not by 
subtracting, is tempting.  How might we do that?  If the two groups were random 
samples from their respective populations, we would like to test the hypothesis 
that they were drawn from populations that have the same median.  We don't 
know what that median-in-common is [call it X, which would have to be A,B,C,D, 
or E], but we could try to determine the probability of getting, by chance, a 
median of B for one random sample and a median of D for another random 
sample, when the median in both populations is equal to X, where X = A or B or 
C or D or E.   
 
Suppose X = A.  How many ways could we get a median of B in a random 
sample of three observations?  Here is a list of the possibilities: 
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ABB 
ABC [what we actually got for the first sample] 
ABD 
ABE 
BBB 
BBC 
BBD 
BBE 
 
If I've calculated properly, there are 35 different sample results for 3 observations 
on a 5-point scale, 8 of which produce a sample median of B.  Knowing nothing 
about the median in the population, the probability of getting a sample median of 
B is therefore 8/35 or approximately .229.  But if the population median is A then 
the probability of getting a sample median of B should be more likely because 4 
of those 8 possibilities include one A.   
 
The only way that A can be the population median for 5 observations is to have 
three A's among those 5, so that there is an A in the middle.  There are 15 such 
combinations: AAAAA, AAAAB, AAAAC, AAAAD, AAAAE, AAABB, AAABC, 
AAABD, AAABE, AAACC, AAACD, AAACE, AAADD, AAADE, and AAAEE. 
When sampling from that population the probability of getting ABC is 1/15, or 
approximately .067 [when the observations in the population are AAABC].  The 
probability of getting CDE is zero.  So it is highly unlikely [impossible?] that the 
two samples came from the same population with a median of A. 
 
If X = B, there are 30 ways of getting a population median of B.  The probability 
of getting ABC, with a sample median of B, is 8/30, or approximately .267.  The 
probability of getting CDE is again zero.  
 
If X = C, there are 32 ways in which the population median can be C.  The 
probability of getting ABC, with a sample median of B, is 6/36, or approximately 
.167.  The probability of getting CDE, with a sample median of D, is also 6/36.  
[That figures, since ABC and CDE are "equally close" to C.] 
 
If X = D, there are 30 ways in which the population median can be D.  The 
probability of getting ABC, with a sample median of B, is zero [not surprisingly 
because of the symmetry with a population median of B] and the probability of 
CDE, with a sample median of D, is .267.   
 
If X = E, the probability of getting ABC, with a median of B, is zero, and the 
probability of CDE, with a median D, is 1/15 = approximately .067. 
 
Putting all of this together, we have: 
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Population median       Pr. (ABC)     Pr. (CDE) 
 
 A   .067  0               
 B   .267  0     
 C   .167  .167 
 D   0  .167    
 E   0  .067 
 
Are ABC and CDE significantly different?  Certainly if the population median is 
A,B,D, or E.  But not if it is C.  What is the probability of each of those population 
medians?  That's a Bayesian question that a frequentist like me doesn't know 
how to answer. 
 
Does all of this make sense?  If not, there's always the bootstrap and the 
jackknife.  I prefer the latter [I might be the only one who does] because I don't 
like sampling with replacement. 
 
If you're still not convinced that the median is to be preferred to the mean for 
ordinal scales, please read the article by Marcus-Roberts and Roberts (1987).  
They gave an example regarding the comparison of two groups for which the 
mean for Group 1 was higher than the mean for Group 2, yet for a defensible 
monotonic data transformation the mean for Group 1 was lower than the mean 
for Group 2.  That doesn't happen with medians. 
 
A final note 
 
A recent article by Hellmann, Kris, and Rudin (2016) picks up where Gould left 
off, but concentrates on "milestones" (one year, two year, and five-year survival 
points) rather than on the frequency distribution of survival time.  And for 
everything you've wanted to know about medians, and then some, see the entry 
for "Median" in Wikipedia.  There is a discussion of a new [to me, anyhow] 
statistic called a medoid, which can be used for an even number of observations 
when you don't like to take the mean of the middle two numbers [which I don't 
like to do]. 
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CHAPTER 18:  MEDIANS FOR ORDINAL SCALES SHOULD BE LETTERS, 
NOT NUMBERS 
 
Introduction 
 
Near the end of the previous chapter I cited an under-appreciated article by 
Marcus-Roberts and Roberts (1987) entitled "Meaningless statistics".  On page 
347 they gave an example of a five-point ordinal scale for which School 1 had a 
lower mean than School 2, but for a perfectly defensible monotonic 
transformation of that scale School 1 had the higher mean.  The authors claimed 
that we shouldn't compare means that have been calculated for ordinal scales.  I 
wholeheartedly agree.  We should compare medians. 
 
The matter of the appropriateness of means, standard deviations, and Pearson 
r's for ordinal scales has been debated for many years, starting with S.S. 
Stevens' (1946) proscription.  I even got myself embroiled in the controversy, 
twice (Knapp, 1990, 1993). 
 
What this chapter is not about 
 
I am not concerned with the situation where the "ordinal scale" consists merely of 
the rank-ordering of observations, i.e., the data are ranks from 1 to n, where n is 
the number of things being ranked.  I am concerned with ordinal ratings, not 
rankings.  (Ratings and rankings aren't the same thing; see Chapter 10.) 
 
The purpose of the present chapter 
 
In this chapter I make an even stronger argument than Marcus-Roberts and 
Roberts made:  If you have an ordinal scale, you should always report the 
median as one of the ordered categories, using a letter and not a number. 
 
Two examples 
 
1.  You have a five-categoried  grading scale with scale points A, B, C, D, and E 
(the traditional scale used in many schools).  You have data for a particular 
student who took seven courses and obtained the following grades, from lowest 
to highest: D,C,C,B,B,B,A (there were no E's).  The median grade is the fourth 
lowest (which is also the fourth highest), namely B.  You don't need any numbers 
for the categories, do you?  
 
2.  You have a five-categoried Likert-type scale with scale points a (strongly 
disagree), b(disagree), c(undecided), d(agree) and e(strongly agree).    
 
First dataset:  You have data for a group of seven people who gave the 
responses a,b,b,b,c,d,e.  The median is b (it's also the mode).  No need for 
numbers. 
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Second dataset:  You have data for a different group of seven people.  Their  
responses were a,b,c,d,d,d,d (there were no e's).  The median is d.  Still no need 
for numbers. 
 
Third dataset:  You have data for a group of ten people who gave the following 
responses: a,a,b,b,b,c,c,c,d,d (still no e's).  What is the median?  I claim there is 
no median for this dataset; i.e., it is indeterminate.  
  
Fourth dataset:  You have data for a group of ten people who gave the following 
responses:  a,a,a,a,a,e,e,e,e,e.  There is no median for that dataset either.  
 
Fifth dataset:  You have the following data for a group of sixteen people  who 
gave the following responses: a,b,b,b,b,c,c,c,c,c,c,d,d,d,d,e.  That's a very pretty 
distribution (frequencies of 1, 4, 6, 4, and 1); it's as close to a normal distribution  
you can get for sixteen observations on that five-point scale (the frequencies are 
the binomial coeficients for n = 4).  But normality is not necessary.  The median is 
c (a letter, not a number). 
 
What do most people do? 
 
I haven't carried out an extensive survey, but I would venture to say that for those 
examples most people would assign numbers to the various categories, get the 
data, put the obtained numerical scores in order, and pick out the one in the 
middle.   For the letter grades they would probably assign the number 4 to an A, 
the number 3 to a B, the number 2 to a C, the number 1 to a D, and the number 0 
to an E.  The data would then be 1,2,2,3,3,3,4 for the person and the median 
would be 3.  They might even calculate a "grade-point average" (GPA) for that 
student by adding up all of those numbers and dividing by 7. 
 
For the five datasets for the Likert-type scale they would do the same thing, 
letting strongly disagree = 1, disagree = 2, undecided = 3, agree = 4, and 
strongly agree = 5.  The data for the third dataset would be 1,1,2,2,2,3,3,3,4,4, 
with a median of 2.5 (they would "split the difference" between the middle two 
numbers, a 2 and a 3, i.e., they would add the 2 and the 3 to get 5 and divide by 
2 to get 2.5).  The data for the fourth dataset would be 1,1,1,1,1,5,5,5,5,5, with a 
median of 3, again by adding the two middle numbers, 1 and 5, to get 6 and 
dividing by 2 to get 3. 
 
What's wrong with that? 
 
Lots of things.  First of all, you don't need to convert the letters into numbers; the  
letters work just fine by themselves.  Secondly, the numbers 1,2,3,4,and 5 for the 
letter grades and for the Likert-type scale points are completely arbitrary; any 
other set of five increasing numbers would work equally well.  Finally, there is no 
justification for the splitting of the difference between the middle two numbers of 
the third dataset or the fourth dataset.  You can't add numbers for such scales; 
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there is no unit of measurement and the response categories are not equally 
spaced.  For instance, the "difference" between a 1 and a 2 is much smaller than 
the "difference" between a 2 and a 3.  That is, the distinction between strongly 
disagree and disagree is minor (both are disagreements) compared to the 
distinction between disagree and undecided.  Furthermore, the median of 2.5 for 
the third dataset doesn't make sense; it's not one of the possible scale values.  
The median of 3 for the fourth dataset is one of the scale values, but although 
that is necessary it is not sufficient (you can't add and divide by 2 to get it). 
   
[I won't even begin to get into what's wrong with calculating grade-point 
averages.  See Chansky (1964) if you care.  His article contains a couple of 
minor errors, e.g., his insistence that scores on interval scales have to be 
normally distributed, but his arguments against the usual way to calculate a GPA 
are very sound.] 
 
But, but,... 
 
I know.  People have been doing for years what Marcus-Roberts and Roberts, 
and I, and others, say they shouldn't.   
 
How can we compare medians with means and modes without having any 
numbers for the scale points?  Good question.  For interval and ratio scales go 
right ahead, but not for ordinal scales; means for ordinal scales are a no-no 
(modes are OK). 
 
How about computer packages such as Excel, Minitab, SPSS, and SAS?  Can 
they spit out medians as letters rather than numbers?  Excel won't calculate the 
median of a set of letters, but it will order them for you (using the Sort function on 
the Data menu), and it is a simple matter to read the sorted list and pick out the 
median.  My understanding is the other packages can't do it (my friend Matt 
Hayat confirms that both SPSS and SAS insist on numbers).  Not being a 
computer programmer I don't know why, but I'll bet that it would be no harder to 
sort letters (there are only 26 of them) than numbers (there are lots of them!) and 
perhaps even easier than however they do it to get medians now. 
 
How can I defend my claim about the median for the third and fourth datasets for 
the Likert-type scale example?  Having an even number of observations is 
admittedly one of the most difficult situations to cope with in getting a median.  
But we are able to handle the case of multiple modes (usually by saying there is 
no mode) so we ought to be able to handle the case of not being able to 
determine a median (by saying there is no median). 
 
How about between-group comparisons? 
 
All of the previous examples were for one person on one scale (the seven 
grades) or for one group of persons on the same scale (the various responses for 
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the Likert-type scale).  Can we use medians to compare the responses for the 
group of seven people whose responses were a,b,b,b,c,d,e (median = b) with the 
group of seven people whose responses were a,b,c,d,d,d,d (median = d), both 
descriptively and inferentially?  That is the 64-dollar question (to borrow a phrase 
from an old radio program).  But let's see how we might proceed. 
 
The two medians are obviously not the same.  The first median of b represents 
an over-all level of disagreement; the second median of d represents an over-all 
level of agreement.  Should we subtract the two (d - b) to get c?  No, that would 
be awful.  Addition and subtraction are not defensible for ordinal scales, and 
even if they were, a resolution of c (undecided) wouldn't make any sense.  If the 
two groups were random samples, putting a confidence interval around that 
difference would be even worse. 
 
Testing the significance of the "difference" between the two medians, but not by 
subtracting, is tempting.  How might we do that?  If the two groups were random 
samples from their respective populations, we would like to test the hypothesis 
that they were drawn from populations that have the same median.  We don't 
know what that median-in-common is (call it x, which would have to be a,b,c,d,or 
e), but we could try to determine the probability of getting, by chance, a median 
of b for one random sample and a median of d for another random sample, when 
the median in both populations is equal to x, for all x = a,b,c,d,and e.  Sound 
doable?  Perhaps, but I'm sure it would be hard.  Let me give it a whirl.  If and 
when I run out of expertise I'll quit and leave the rest as an "exercise for the 
reader" (you). 
 
OK.  Suppose x =a.  How many ways could I get a median of b in a random 
sample of seven observations?  Does a have to be one of the observations?  
Hmmm; let's start by assuming yes, there has to be at least one a.  Here's a 
partial list of possibilities: 
 
a,b,b,b,c,c,c 
a,b,b,b,c,c,d 
a,b,b,b,c,c,e 
a,b,b,b,c,d,d 
a,b,b,b,c,d,e (the data we actually got for the first sample) 
a,b,b,b,c,e,e 
a,a,b,b,c,c,c 
a,a,b,b,c,c,d 
a,a,b,b,c,c,e 
a,a,b,b,c,d,d 
... 
I haven't run out of expertise yet, but I am running out of patience.  Do you get 
the idea?  But there's a real problem.  How do we know that each of the 
possibilities are equally likely?  It would intuitively seem (to me, anyhow) that a 



 120 

sample of observations with two a's would be more likely than a sample of 
observations with only one a, if the population median is a, wouldn't it? 
 
One more thing 
 
I thought it might be instructive to include a discussion of a sampling distribution 
for medians (a topic not to be found in most statistics books).  Consider the 
following population distribution of the seven spectrum colors for a hypothetical 
situation (colors of pencils for a "lot" in a pencil factory?) 
 
Color    Frequency 
 
Red  (R)           1 
Orange  (O)           6 
Yellow  (Y)         15 
Green  (G)         20 
Blue  (B)         15 
Indigo  (I)           6 
Violet  (V)           1  
 
That's a nice, almost perfectly normal, distribution (the frequencies are the 
binomial coefficients for n = 6).  The median is G.  [Did your science teacher ever 
tell you how to remember the names of the seven colors in the spectrum?  Think 
of the name Roy G. Biv.]   
 
Suppose we take 100 random samples of size five each from that population, 
sampling without replacement within sample and with replacement among 
samples.  I did that; here's what Excel and I got for the empirical sampling 
distribution of the 100 medians:  [Excel made me use numbers rather than letters 
for the medians, but that was OK; I transformed back to letters after I got the 
results.] 
 
Median   Frequency 
 
O             1 
Y          25 
G          51 
B          22 
I            1 
 
You can see that there were more medians of G than anything else.  That's 
reasonable because there are more Gs in the population than anything else.  
There was only one O and only one I,  There couldn't be any Rs or Vs; do you 
know why? 
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Summary 
 
In this chapter I have tried, hopefully at least partially successfully, to create an 
argument for never assigning numbers to the categories of an ordinal scale and 
to always report one of the actual categories as the median for such a scale. 
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CHAPTER 19:  DISTRIBUTIONAL OVERLAP:  THE CASE OF ORDINAL 
DOMINANCE 
 
 
Introduction 
 
One of the things that has concerned me most about statistical analysis over the 
years is the failure by some researchers to distinguish between random sampling 
and random assignment when analyzing  data for the difference between two 
groups.  Whether they are comparing a randomly sampled group of men with a 
randomly sampled group of women, or a randomly assigned sample of 
experimental subjects with a randomly assigned  sample of control subjects (or, 
worse yet, two groups that have been neither randomly sampled nor randomly 
assigned), they invariably carry out a t-test of the statistical significance of the 
difference between the means for the two groups and/or construct a confidence 
interval for that "effect size". 
 
I am of course not the first person to be bothered by this.  The problem has been 
brought to the attention of readers of the methodological literature for many 
years.  [See, for example, Levin's (1993) comments regarding Shaver (1993); 
Edgington (1995); Lunneborg (2000); and Levin (2006).]  Some researchers 
"regard" their non-randomly-sampled but randomly-assigned subjects as having 
been drawn from hypothetical populations "like these"; some have never heard of 
randomization (permutation) tests for analyzing the data for that situation; others 
have various arguments for doing what they do (e.g., that the t test is often a 
good approximation to the randomization test); and others don't seem to care. 
 
It occurred to me that there might be a way to create some sort of  relatively 
simple "all-purpose" statistic that could be used to compare two independent 
groups no matter how they were sampled or assigned (or just stumbled upon).  I 
have been drawn to two primary sources: 
 
1.  The age-old concept of a proportion.   
 
2.  Darlington's (1973) article in Psychological Bulletin on "ordinal dominance" (of 
one group over another).  [The matter of ordinal dominance was treated by 
Bamber (1975) in greater mathematical detail and in conjunction with the notion 
of receiver operating chacteristic (ROC) curves, which are currently popular in 
epidemiological research.] 
 
My recommendation 
 
Why not do as Darlington suggested and plot the data for Group 1 on the 
horizontal axis of a rectangular array, plot the data for Group 2 on the vertical 
axis, see how many times each of the observations in one of the groups (say 
Group 1) exceeds each of the observations in the other group, convert that to a 
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proportion, and then do with that proportion whatever is warranted?  (Report it 
and quit; test it against a hypothesized proportion; put a confidence interval 
around it; whatever). 
 
Darlington's example [data taken from Siegel (1956)] 
 
The data for Group 1:  0, 5, 8, 8, 14, 15, 17, 19, 25 
The data for Group 2:  3, 6, 10, 10, 11, 12, 13, 13, 16 
 
The layout: 
 

16       x x x 
13     x x x x x 
13     x x x x x 
12     x x x x x 
11     x x x x x 
10     x x x x x 
10     x x x x x 
6   x x x x x x x 
3  x x x x x x x x 

          
 0 5 8 8 14 15 17 19 25 

 
 
The number of times that an observation in Group 1 exceeded an observation in 
Group 2 was 48.  The proportion of times was 48/81, or .593.  Let's call that pe 
for "proportion exceeding".  [Darlington calculated that proportion but didn't 
pursue it further.  He recommended the construction of an ordinal dominance 
curve through the layout, which is a type of cumulative frequency distribution 
similar to the cumulative frequency distribution used as the basis for the 
Kolmogorov-Smirnov test.]  "Percent exceeding" would be 59.3%. 
 
How does this differ from other suggestions? 
 
Comparing two independent groups by considering the degree of overlapping of 
their respective distributions appears to have originated with the work of Truman 
Kelley (1919), the well-known expert in educational measurement and statistics 
at the time, who was interested in the percent of one normal distribution that was 
above the median of a second normal distribution.  [His paper on the topic was 
typographically botched by the Journal of Educational Psychology and was later 
(1920) reprinted in that journal in corrected form.]  The notion of distributional 
overlap was subsequently picked up by Symonds (1930), who advocated the use 
of biserial r as an alternative to Kelley's measure, but he was taken to task by 
Tilton (1937) who argued for a different definition of percent overlap that more 
clearly reflected the actual amount of overlap.  [Kelley had also suggested a 
method for correcting percent overlap for unreliability.]  Percent overlap was 
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subsequently further explored by Levy (1967), by Alf and Abrahams (1968), and 
by Elster and Dunnette (1971).   
 
In their more recent discussions of percent overlap, Huberty and his colleagues 
(Huberty & Holmes, 1983; Huberty & Lowman, 2000; Hess, Olejnik, & Huberty, 
2001; Huberty, 2002) extended the concept to that of "hit rate corrected for 
chance" [a statistic similar to Cohen's (1960) kappa] in which discriminant 
analysis or logistic regression analysis is employed in determining the success of 
"postdicting" original group membership.  (See also Preese, 1983; Campbell, 
2005; and Natesan & Thompson, 2007.) 
 
There is also the "binomial effect size display (BESD)" advocated by Rosenthal 
and Rubin  (1982) and the "probability of superior outcome" approach due to 
Grissom (1994).  BESD has been criticized because it involves the 
dichotomization of continuous dependent variables.  Grissom's statistic is likely to 
be particularly attractive to experimenters and meta-analysts, and in his article he 
includes a table that provides the probabilistic superiority equivalent to Cohen's 
(1988) d for values of d between .00 and 3.99 by intervals of .01. 
 
Most closely associated with the procedure proposed here (the use of pe) is the 
work represented by a sequence of articles beginning with McGraw and Wong 
(1992) and extending through Cliff (1993), Vargha and Delaney (2000), Delaney 
and Vargha (2002), Feng and Cliff (2004), and Feng (2006). [Amazingly--to me, 
anyhow--the only citation to Darlington (1973) in any of those articles is by 
Delaney and Vargha in their 2002 article!]  McGraw and Wong were concerned 
with a "common language effect size" for comparing one group with another for 
continuous, normally distributed variables, and they provided a technique for so 
doing.  Cliff argued that many variables in the social sciences are not continuous, 
much less normal, and he advocated an ordinal measure d (for sample 
dominance; ŭ for population dominance). [This is not to be confused with 
Cohen's effect size d, which is appropriate for interval-scaled variables only.]  He 
(Cliff) defined d as the difference between the probability that an observation in 
Group 1 exceeds an observation in Group 2 and the probability that an 
observation in Group 2 exceeds an observation in Group 1.  In their two articles 
Vargha and Delaney sharpened the approach taken by McGraw and Wong, in 
the process of which they suggested a statistic, A, which is  equal to my pe  if 
there are no ties between observations in Group 1 and observations in Group 2, 
but they didn't pursue it as a proportion that could be treated much like any other 
proportion.  Feng and Cliff, and Feng, reinforced Cliff's earlier arguments for 
preferring ŭ and d, which range from -1 to +1.  Vargha and Delaney's A ranges 
from 0 to 1 (as does pe and all proportions) and is algebraically equal to (1 + 
d)/2, i.e., it is a simple linear transformation of Cliff's measure.  The principal 
difference between Vargha and Delaney's A and Cliff's d, other than the range of 
values they can take on, is that A explicitly takes ties into account. 
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Dichotomous outcomes 
 
The ordinal-dominance-based "proportion exceeding" measure also works for 
dichotomous dependent variables.  For the latter all one needs to do is dummy-
code (0,1) the outcome variable, string out the 0's followed by the 1's for Group 1 
on the horizontal axis, string out the 0's followed by the 1's for Group 2 on the 
vertical axis, count how many times a 1 for Group 1 appears in the body of the 
layout with a 0 for Group 2, and divide that count by n1 times n2, where n1 is the 
number of observations in Group 1 and n2 is the number of obervations in Group 
2.  Here is a simple hypothetical example: 
 
The data for Group 1:  0, 1, 1, 1 
The data for Group 2:  0, 0, 1, 1, 1 
 
The layout: 
 

1     
1     
0  x x x 
0  x x x 
0  x x x 

      
 0 1 1 1 

 
  
There are 9 instances of a 1 for Group 1 paired with a 0 for Group 2, out of 4X5 = 
20 total comparisons, yielding a "proportion exceeding" value of 9/20 = .45.   
 
Statistical inference 
 
For the Siegel/Darlington example, if the two groups had been simply randomly 
sampled from their respective populations, the inference of principal concern 
might be the establishment of a confidence interval around the sample pe . [You 
get tests of hypotheses "for free" with confidence intervals for proportions.]  But 
there is a problem regarding the "n" for pe.  In that example the sample 
proportion, .593, was obtained with n1 x n2 = 9x9 = 81 in the denominator.  81 is 
not the  sample size (the sum of the sample sizes for the two groups is only 9 + 9 
= 18).  This problem had been recognized many years ago in research on the 
probability that Y is less than X, where Y and X are vectors of length n and m, 
respectively.  In articles beginning with Birnbaum and McCarty (1958) and 
extending through Owen, Craswell, and Hanson (1964), Ury (1972), and others, 
a complicated procedure for making inferences from the sample probabilities to 
the corresponding population probabilities was derived.   
 
The Owen, et al. and Ury articles are particularly helpful in that they includes 
tables for constructing confidence intervals around a sample pe .  For the 
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Siegel/Darlington data, confidence intervals for Øe  are not very informative, 
however, since even the 90% interval extends from 0 (complete overlap in the 
population) to 1 (no overlap whatsoever), because of the small sample size. 
 
If the two groups had been randomly assigned to experimental treatments, but 
had not been randomly sampled, a randomization test is called for, with a 
"proportion exceeding" calculated for each re-randomization, and a determination 
made of where the observed pe falls among all of the possible pe 's that could 
have been obtained under the (null) hypothesis that each observation would be 
the same no matter to which group the associated object (usually a person) 
happened to be assigned.   
 
For the small hypothetical example of 0's and 1's the same inferential choices are 
available, i.e., tests of hypotheses or confidence intervals for random sampling, 
and randomization tests for random assignment.  [There are confidence intervals 
associated with randomization tests, but they are very complicated.  See, for 
example, Garthwaite (1996).]  If those data were for a true experiment based 
upon a non-random sample, there are "9 choose 4" (the number of combinations 
of 9 things taken 4 at a time) = 126 randomizations that yield pe 's ranging from  
0.00 (all four 0's in Group 1) to 0.80 (four 1's in Group 1 and only one 1 in Group 
2).  The .45 is not among the 10% least likely to have been obtained by chance, 
so there would not be a statistically significant treatment effect at the .10 level.  
(Again the sample size is very small.)  The distribution is as follows: 
 
pe  frequency 
 
.00       1 
.05     22 
.20     58 
.45     40 
.80       5 
    ___ 
   126 
 
To illustrate the use of an arguably defensible approach to inference for the 
overlap of two groups that have been neither randomly sampled or randomly 
assigned, I turn now to a set of data originally gathered by Ruback and Juieng 
(1997).  They were concerned with the problem of how much time drivers take to 
leave parking spaces after they return to their cars, especially if drivers of other 
cars are waiting to pull into those spaces.  They had data for 100 instances when 
other cars were waiting and 100 instances when other cars were not waiting.  On 
his statistical home page, Howell (2007) has excerpted from that data set 20 
instances of "no one waiting" and 20 instances of "someone waiting", in order to 
keep things manageable for the point he was trying to make about statistical 
inferences for two independent groups.  Here are the data (in seconds): 



 127 

No one waiting  
 

36.30  42.07  39.97  39.33  33.76  33.91  39.65  84.92  40.70  39.65 

39.48  35.38  75.07  36.46  38.73  33.88  34.39  60.52  53.63  50.62  

Someone waiting 

49.48  43.30  85.97  46.92  49.18  79.30  47.35  46.52  59.68  42.89 

49.29  68.69  41.61  46.81  43.75  46.55  42.33  71.48  78.95  42.06 

 
Here is the 20x20 dominance layout (I have rounded to the nearest tenth of a 
second in order to save room): 
 
 
36.3 x x x x x x x x x x x x x x x 
42.1 x x x x x x x x x x x x  x x 
40.0 x x x x x x x x x x x x x x x 
39.3 x x x x x x x x x x x x x x x 
33.8 x x x x x x x x x x x x x x x 
33.9 x x x x x x x x x x x x x x x 
39.7 x x x x x x x x x x x x x x x 
84.9   x              
40.7 x x x x x x x x x x x x x x x 
39.7 x x x x x x x x x x x x x x x 
39.5 x x x x x x x x x x x x x x x 
35.4 x x x x x x x x x x x x x x x 
75.1   x   x          
36.5 x x x x x x x x x x x x x x x 
38.7 x x x x x x x x x x x x x x x 
33.9 x x x x x x x x x x x x x x x 
34.4 x x x x x x x x x x x x x x x 
60.5   x   x      x    
53.6   x   x   x   x    
50.6   x   x   x   x    
                
 49.5 43.3 86.0 46.9 49.2 79.3 47.4 46.5 59.7 42.9 49.3 68.7 41.6 46.8 43.8 

 
For these data pe is equal to 318/400 = .795.  Referring to Table 1 in Ury (1972) 
a 90% confidence interval for Øe  is found to extend from .795 - .360 to .795 + 
.360, i.e., from .435 to 1.  A "null hypothesis" of a 50% proportion overlap in the 
population could not be rejected. 
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Howell actually carried out a randomization test for the time measures, assuming 
something like a natural experiment having taken place (without the random 
assignment, which would have been logistically difficult if not impossible to carry 
out).  Based upon a random sample of 5000 of the 1.3785 x 1011  possible re-
randomizations he found that there was a statistically significant difference at the 
.05 level (one-tailed test) between the two groups, with longer times taken when 
there was someone waiting.   He was bothered by the effect that one or two 
outliers had on the results, however, and he discussed alternative analyses that 
might minimize their influence    
     
Disadvantages of the "proportion exceeding" approach 
 
The foregoing discussion was concerned with the postulation of pe as a possibly 
useful measure of the overlap of the frequency distributions for two independent 
groups.  But every such measure has weaknesses.  The principal disadvantage 
of pe is that it ignores the actual magnitudes of the n1 x n2 pairwise differences, 
and any statistical inferences based upon it for continuous distributions are 
therefore likely to suffer from lower power and less precise confidence intervals.  
A second disadvantage is that there is presently no computer program available 
for calculating pe .  [I'm not very good at writing computer programs, but I think 
that somebody more familiar with Excel than I am would have no trouble dashing 
one off.  The layouts used in the two examples in this paper were actually 
prepared in Excel and "pasted" into a Word document.]  Another disadvantage is 
that it is not (at least not yet) generalizable to two dependent groups, more than 
two groups, or multiple dependent variables.   
 
A final note 
 
Throughout this paper I have referred to the .10 significance level and the 90% 
confidence coefficient.  The choice of significance level or confidence coefficient 
is of course entirely up to the researcher and should reflect his/her degree of 
willingness to be wrong when making sample-to-population inferences.  I kinda 
like the .10 level and 90% confidence for a variety of reasons.  First of all, I think 
you might want to give up a little on Type I error in order to pick up a little extra 
power (and give up a little precision) that way.  Secondly, as illustrated above, 
more stringent confidence coefficients often lead to intervals that don't cut down 
very much on the entire scale space.  And then there is my favorite reason that 
may have occurred to others.  When checking my credit card monthly statement 
(usually by hand, since I like the mental exercise), if I get the units (cents) digit to 
agree I often assume that the totals will agree.  If they agree, Visa's "null 
hypothesis" doesn't get rejected when perhaps it should be rejected.  If they don't 
agree, if I reject Visa's total, and if it turns out that Visa is right, I have a 10% 
chance of having made a Type I error, and I waste time needlessly re-calculating.  
Does that make sense? 
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CHAPTER 20: INVESTIGATING THE RELATIONSHIP BETWEEN TWO 
VARIABLES  
      
"What is the relationship between X and Y?", where X is one variable, e.g., 
height, and Y is another variable, e.g., weight, is one of the most common 
research questions in all of the sciences.  But what do we mean by "the 
relationship between two variables"?   Why do we investigate such relationships?  
How do we investigate them?  How do we display the data? How do we 
summarize the data?  And how do we interpret the results?  In this chapter I 
discuss various approaches that have been taken, including some of the 
strengths and weaknesses of each. 
 
The ubiquitous research question 
 
"What is the relationship between X and Y?" is, and always has been, a question 
of paramount interest to virtually all researchers.  X and Y might be different 
forms of a measuring instrument.  X might be a demographic variable such as 
sex or age, and Y might be a socioeconomic variable such as education or 
income.  X might be an experimentally manipulable variable such as drug dosage 
and Y might be an outcome variable such as survival.  The list goes on and on.  
But why are researchers interested in that question?  There are at least three 
principal reasons: 
 
1.  Substitution.  If there is a strong relationship between X and Y, X might be 
substituted for Y, particularly if X is less expensive in terms of money, time, etc.  
The first example in the preceding paragraph is a good illustration of this reason; 
X might be a measurement of height taken with a tape measure and Y might be a 
measurement of height taken with an electronic stadiometer. 
 
2.  Prediction.  If there is a strong relationship between X and Y, X might be used 
to predict Y.  An equation for predicting  income (Y) from age (X) might be helpful 
in understanding the trajectory in personal income across the age span. 
 
3.  Causality.  If there is a strong relationship between X and Y, and other 
variables are directly or statistically controlled, there might be a solid basis for 
claiming, for example, that an increase in drug dosage causes an increase in life 
expectancy. 
 
What does it mean? 
 
In a recent internet posting, Donald Macnaughton (2002) summarized the 
discussion that he had with Jan deLeeuw, Herman Rubin, and Robert Frick 
regarding seven definitions of the term "relationship between variables".   The 
seven definitions differed in various technical respects.  My personal preference 
is for their #6: 
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There is a relationship between the variables X and Y if, for at least one pair of 
values X' and X" of X,  E(Y|X') ~= E(Y|X"), where E is the expected-value 
operator, the vertical line means "given", and ~= means "is not equal to".  (It 
indicates that X varies, Y varies, and all X's are not associated with the same Y.) 
 
Research design 
 
In order to address research questions of the "What is the relationship between X 
and Y?" type, a study must be designed in a way that will be appropriate for 
providing the desired information.  For relationship questions of a causal nature a 
double-blind true experimental design, with simple random sampling of a 
population and simple random assignment to treatment conditions, might be 
optimal.  For questions concerned solely with prediction, a study based upon a 
stratified random sampling design is often employed.  And if the objective is to 
investigate the extent to which X might be substituted for Y, X must be "parallel" 
to Y (a priori comparably valid, with measurements on the same scale so that 
degree of agreement as well as degree of association can be determined). 
 
Displaying the data 
 
For small samples the raw data can be listed in their entirety in three columns: 
one for some sort of identifier; one for the obtained values for X; and one for the 
corresponding obtained values for Y.  If X and Y are both continuous variables, a 
scatterplot of Y against  X should be used in addition to or instead of that three-
column list.  [An interesting alternative to the scatterplot is the "pair-link" diagram 
used by Stanley (1964) and by Campbell and Kenny (1999) to connect 
corresponding X and Y scores.]  If X is a categorical independent variable, e.g., 
type of treatment to which randomly assigned in a true experiment, and Y is a 
continuous dependent variable, a scatterplot is also appropriate, with values of X 
on the horizontal axis and with values of Y on the vertical axis. 
 
For large samples a list of the raw data would usually be unmanageable, and the 
scatterplot might be difficult to display with even the most sophisticated statistical 
software because of coincident or approximately coincident data points.  (See, 
for example, Cleveland, 1995; Wilkinson, 2001.)  If X and Y are both naturally 
continuous and the sample is large, some precision might have to be sacrificed 
by displaying the data according to intervals of X and Y in a two-way frequency 
contingency table (cross-tabulation).  Such tables are also the method of choice 
for categorical variables for large samples. 
 
How small is small and how large is large?  That decision must be made by each 
individual researcher.  If a list of the raw data gets to be too cumbersome, if the 
scatterplot gets too cluttered, or if cost considerations such as the amount of 
space that can be devoted to displaying the data come into play, the sample can 
be considered large. 
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Summarizing the data 
 
For two continuous variables it is conventional to compute the means and 
standard deviations of X and Y,  the Pearson product-moment correlation 
coefficient between X and Y, and the corresponding regression equation, if the 
objective is to determine the direction and the magnitude of the degree of linear 
relationship between the two variables.  Other statistics such as the medians and 
the ranges of X and Y, the residuals (the differences between the actual values 
of Y and the values of Y on the regression line for the various values of X), and 
the like, might also be of interest.  If curvilinear relationship is of equal or greater 
concern, the fitting of a  quadratic or exponential function might be considered.   
 
[Note:  There are several ways to calculate Pearson's r, all of which are 
mathematically equivalent.  Rodgers & Nicewander (1988) provided thirteen of 
them.  There are actually more than thirteen.  I derived a rather strange-looking 
one several years prior to that (Knapp, 1979) in an article on estimating 
covariances using the incidence sampling technique developed by Sirotnik & 
Wellington (1974).] 
 
For categorical variables there is a wide variety of choices.  If X and Y are both 
ordinal variables with a small number of categories (e.g., for Likert-type scales), 
Goodman and Kruskal's (1979) gamma is an appropriate statistic.  If the data are 
already in the form of ranks or easily convertible into ranks, one or more rank-
correlation coefficients, e.g., Spearman's rho or Kendall's tau, might be 
preferable for summarizing the direction and the strength of the relationship 
between the two variables.  
 
If X and Y are both nominal variables, indexes such as the phi coefficient (which 
is mathematically equivalent to Pearson's r for dichotomous variables) or 
Goodman and Kruskal's (1979) lambda might be equally defensible alternatives. 
 
For more on displaying data in contingency tables and for the summarization of 
such data, see Simon (1978) and Knapp (1999; 2015). 
 
Interpreting the data 
 
Determining whether or not a relationship is strong or weak, statistically 
significant or not, etc. is part art and part science.  If the data are for a full 
population or for a "convenience" sample, no matter what size it may be, the 
interpretation should be restricted to an "eyeballing" of the scatterplot or 
contingency table, and the descriptive (summary) statistics .  For a probability 
sample, e.g., a simple random random or a stratified random sample, statistical 
significance tests and/or confidence intervals are usually required for proper 
interpretation of the findings, as far as any inference from sample to population is 
concerned.  But sample size must be seriously taken into account for those 
procedures or anomalous results could arise, such as a statistically significant 
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relationship that is substantively inconsequential.  (Careful attention to choice of 
sample size in the design phase of the study should alleviate most problems.) 
 
An example 
 
The following example has been analyzed and scrutinized by many researchers.  
It is due to Efron and his colleagues (see, for example, Diaconis & Efron, 1983).  
[LSAT = Law School Aptitude Test; GPA = Undergraduate Grade Point Average]  
 
Law School          mean LSAT           mean GPA 
 
  1    576    3.39 
  2    635    3.30 
  3    558    2.81 
  4    578    3.03 
  5    666    3.44 
  6    580    3.07 
  7    555    3.00 
  8    661    3.43 
  9    651    3.36 
10    605    3.13 
11    653    3.12 
12    575    2.74 
13    545    2.76 
14    572    2.88 
15    594    2.96 

 
          680  - 
 LSAT        -                                                               2 
                  -                                    * 
                  -                                                        * 
          640  -                                                  * 
                  - 
                  - 
                  -                                     * 
          600  - 
                  -                        * 
                  -                                * 
                  -              *        *        *                         * 
                  - 
          560  -                             * 
                  -           * 
                  -        * 
                  - 
                     +----------+---------+---------+---------+---------+----GPA      
                   2.70      2.85      3.00      3.15      3.30      3.45 
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[The 2 indicates there are two data points (for law schools #5 and #8) that are 
very close to one another in the (X,Y) space.  It doesn't clutter up the scatterplot 
very much, however.  Note:  Efron and his colleagues always plotted GPA 
against LSAT.  I have chosen to plot LSAT against GPA.  Although they were 
interested only in correlation and not regression, if you cared about predicting 
LSAT from GPA it would make more sense to have X = GPA and Y = LSAT, 
wouldn't it? ] 
 
Summary statistics 
 
                 N     MEAN    STDEV    
 lsat         15      600.3      41.8    
 gpa         15      3.095      0.244    
  
 Correlation between lsat and gpa = 0.776 
  
 The regression equation is 
 lsat = 188 + 133 gpa  (standard error of estimate = 27.34)  
  
 Unusual Observations 
 Obs.     gpa      lsat        Fit      Stdev.Fit   Residual   St.Resid 
   1        3.39    576.00    639.62     11.33    -63.62     -2.56R  
  
 R denotes an obs. with a large st. resid. 
 
Interpretation 
 
The scatterplot looks linear and the correlation is rather high (it would be even 
higher without the outlier).  Prediction of GPA from LSAT should be generally 
good, but could be off by about 50 points or so (approximately two standard 
errors of estimate). 
 
If this sample of 15 law schools were to be "regarded" as a simple random 
sample of all law schools, a statistical inference might be warranted.  The 
correlation coefficient of .776 for n = 15 is statistically significant at the .05 level, 
using Fisher's r-to-z transformation; and the 95% confidence interval for the 
population correlation extends from .437 to .922  on the r scale (see Knapp, 
Noblitt, & Viragoontavan, 2000), so we can be reasonably assured that in the 
population of law schools there is a non-zero linear relationship between LSAT 
and GPA. 
 
Complications 
 
Although that example appears to be simple and straightforward, it is actually 
rather complicated, as are many other two-variable examples.  Here are some of 
the complications and some of the ways to cope with them: 
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1.  Scaling.  It could be argued that neither LSAT nor GPA are continuous, 
interval-level variables.  The LSAT score on the 200-800 scale is usually 
determined by means of a non-linear normalized transformation of a raw score 
that might have been corrected for guessing, using the formula number of right 
answers minus some fraction of the number of wrong answers.  GPA is a 
weighted heterogeneous amalgam of course grades and credit hours where an A 
is arbitrarily given 4 points, a B is given 3 points, etc.  It might be advisable, 
therefore, to rank-order both variables and determine the rank correlation 
between the corresponding rankings.  Spearman's rho for the ranks is .796 (a bit 
higher than the Pearson correlation between the scores). 
 
2.  Weighting.  Each of the 15 law schools is given a weight of 1 in the data and 
in the scatterplot.  It might be preferable to assign weights to the schools in order 
to reflect the number of observations that contribute to its average, thus giving 
greater weight to the larger schools.  Korn and Graubard (1998) discuss some 
creative ways to display weighted observations in a scatterplot. 
 
3.  Unit-of analysis.  The sample is a sample of schools, not students.  The 
relationship between two variables such as LSAT and GPA that is usually of 
principal interest is the relationship that would hold for individual persons, not 
aggregates of persons, and even there one might have to choose whether to 
investigate the relationship within school or across schools.  The unit-of-analysis 
problem has been studied for many years (see, for example, Robinson, 1950 and 
Knapp, 1977), and has been the subject of several books and articles, more 
recently under the heading "hierarchical linear modeling" rather than "unit of 
analysis" (see, for example, Raudenbush & Bryk, 2002 and Osborne, 2000). 
 
4.  Statistical assumptions.  There is no indication that those15 schools were 
drawn at random from the population of all law schools, and even if they were, a 
finite population correction should be applied to the formulas for the standard 
errors used in hypothesis testing or interval estimation, since the population at 
the time (the data were gathered in 1973) consisted of only 82 schools, and 15 
schools takes too much of a "bite" out of the 82. 
 
Fisher's r-to-z transformation only "works" for a bivariate normal population 
distribution.  Although the scatterplot for the 15 sampled schools looks 
approximately bivariate normal, that may not be the case in the population, so a 
conservative approach to the inference problem would involve a choice of one or 
more of the following approaches: 
 
a.  A test of statistical significance and/or an interval estimate for the rank 
correlation.  Like the correlation of .776 between the scores, the rank correlation 
of .796 is also statistically significant at the .05 level, but the confidence interval 
for the population rank correlation is shifted to the right and is slightly tighter. 
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b.  Application of the jackknife to the 15 bivariate observations.  Knapp, et al. 
(2000) did that for the "leave one out" jackknife and estimated the 95% 
confidence interval to be from approximately .50 to approximately .99. 
 
c.  Application of the bootstrap to those observations.  Knapp, et al. (2000) did 
that also [as many other researchers, including Diaconis & Efron, 1983 had 
done], and they found that the middle 95% of the bootstrapped correlations 
ranged from approximately .25 to approximately .99. 
 
d.  A Monte Carlo simulation study.   Various population distributions could be 
sampled, the resulting estimates of the sampling error for samples of size 15 
from those populations could be determined, and the corresponding significance 
tests and/or confidence intervals carried out.  One population distribution that 
might be considered is the bivariate exponential. 
 
5.  Attenuation.  The correlation coefficient of .776 is the correlation between 
obtained average LSAT score and obtained average GPA at those 15 schools.  
Should the relationship of interest be an estimate of the correlation between the 
corresponding true scores rather than the correlation between the obtained 
scores?  It follows from classical measurement theory that the mean true score is 
equal to the mean obtained score, so this should not be a problem with the given 
data, but if the data were disaggregated to the individual level a correction for 
attenuation (unreliability) may be called for.  (See, for example, Muchinsky, 1996 
and Raju & Brand, 2003; the latter article provides a significance test for 
attenuation-corrected correlations.)  It would be relatively straightforward for 
LSAT scores, since the developers of that test must have some evidence 
regarding the reliability of the instrument.  But GPA is a different story.  Has 
anyone ever investigated the reliability of GPA?  What kind of reliability 
coefficient would be appropriate?  Wouldn't it be necessary to know something 
about the reliability of the tests and the grades that "fed into" the GPA? 
 
6.  Restriction of range.  The mere fact that the data are average scores presents 
a restriction-of-range problem, since average scores vary less from one another 
than individual test scores do.  There is also undoubtedly an additional restriction 
because students who apply to law schools and get admitted have (or should 
have) higher LSAT scores than students in general.  A correction for restriction of 
range to the correlation of .776 might be warranted (the end result of which 
should be an even higher correlation), and a significance test is also available for 
range-corrected correlations (Raju & Brand, 2003).  
 
7.  Association vs. agreement.  Reference was made above to the matter of 
association and agreement for parallel forms of measuring instruments.  X and Y 
could be perfectly correlated (for example, X = 1,2,3,4,5, and Y = 10,20,30,40,50, 
respectively) but not agree very well in any absolute sense.  That is irrelevant for 
the law school example, since LSAT and GPA are not on the same scale, but for 
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many variables it is the matter of agreement that is of principal concern (see, for 
example, Robinson, 1957 and Engstrom, 1988). 
 
8.  Interclass vs. intraclass.  If X and Y are on the same scale, Fisher's (1958) 
intraclass correlation coefficient may be more appropriate than Pearson's 
product-moment correlation coefficient (which Fisher called an interclass 
correlation).  Again this is not relevant for the law school example, but for some 
applications, e.g., an investigation of the relationship between the heights of twin-
pairs, Pearson's r would actually be indeterminate because we wouldn't know 
which height to put in which column for a given twin-pair. 
 
9.  Precision.  How many significant digits or decimal places are warranted when 
relationship statistics such as Pearson r's are reported?  Likewise for the p-
values or confidence coefficients that are associated with statistical inferences 
regarding the coresponding population parameters.  For the law school example I 
reported an r of .776, a p of (less than) .05, and a 95% confidence interval.  
Should I have been more precise and said that r = .7764 or less precise and said 
that r = .78?  The p that "goes with" an r of .776 is actually closer to .01  than to 
.05.   And would anybody care about a confidence coefficient of, say, 91.3? 
 
10.  Covariance vs. correlation.  Previous reference was made to the tradition of 
calculating Pearson's r for two continuous variables whose linear relationship is 
of concern.  In certain situations it might be preferable to calculate the scale-
bound covariance between X and Y rather than, or in addition to, the scale-free 
correlation.  In structural equation modeling it is the covariances, not the 
correlations, that get analyzed.  And in hierarchical linear modeling the between-
aggregate and within-aggregate covariances sum to the total covariance, but the 
between-aggregate and within-aggregate correlations do not (see Knapp, 1977). 
 
Another example 
 
The following table (from Agresti, 1990) summarizes responses of 91 married 
couples to a questionnaire item.  This example has also been analyzed and 
scrutinized by many people.  The item:  Sex is fun for me and my partner (a) 
never or occasionally, (b) fairly often, (c) very often, (d) almost always.               
      Wife's Rating 
Husband's       Never Fairly     Very   Almost 
Rating             fun        often      often   always           Total 
 
Never fun    7    7    2  3  19   
Fairly often     2    8    3  7  20 
Very often           1    5    4  9  19 
Almost always        2    8    9        14  33 
 
Total                12           28          18        33               91 
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What is the relationship between Wife's Rating (X) and Husband's Rating (Y)?  
There are many ways of analyzing these data in order to provide an answer to 
that question.  In decreasing order of my preference, they are: 
 
1.  Percent agreement (strict).  The number of agreements is equal to 7+8+4+14 
= 33 (the sum of the frequencies in the principal diagonal) which, when divided 
by 91 and multiplied by 100, gives a percent agreement of 36.3%.  If this sample 
of 91 couples were a simple random sample from some large population of 
couples, a confidence interval for the corresponding population percentage could 
be constructed.  (Using the normal approximation to the binomial, the 95% 
confidence interval for percent agreement in the population would extend from 
26.4% to 46.2%.)  In any event, the relationship does not appear to be very 
strong. 
 
2.  Percent partial agreement (lenient).  If "agreement" were to be defined as "not 
off by more than one category", the percent agreement is those 33 + the sums of 
the frequencies in the adjacent parallel diagonals, i.e., 7+3+9 = 19 and 2+5+9 = 
16, for a total of 68 "agreements" out of 91 possibilities, or 74.7%.  
 
3.  Goodman and Kruskal's (1979) gamma.  The two variables are both ordinal 
(percent agreement does not take advantage of that ordinality, but it is otherwise 
very simple and very attractive) and the number of categories is small (4), so by 
applying any one of the mathematically-equivalent formulas for gamma, we have 
gamma = .047. 

4.  Goodman and Kruskal's (1979) lambda.  Not as good a choice as Goodman's 
gamma, because it does not reflect the ordinality of the two variables.  For these 
data lambda = .159. 

5.  Somers' (1962) D.  Somers' D is to be preferred to gamma if the two variables 
take on independent and dependent roles (for example, if we would like to predict 
husband's rating from wife's rating, or wife's rating from husband's rating).  That 
does not appear to be the case here, but Somers' D for these data is .005. 
 
6.  Cohen's (1960) kappa. This is one of my least favorite statistics, since it 
incorporates a "correction" to percent agreement for chance agreements and I 
don't believe that people ever make chance ratings.  But it is extremely popular in 
certain disciplines (e.g., psychology) and some people would argue that it would 
be appropriate for the wife/husband data, for which it is .129 (according to the 
graphpad.com website calculator and Michael Friendly's website). ["Weighted 
kappa", a statistic that reflects partial agreement, also "corrected for chance", is 
.237.]  The sampling distribution of Cohen's kappa is a mess (see, for example, 
Fleiss, Cohen, & Everitt, 1969), but the graphpad.com calculator yielded a 95% 
confidence interval of -.006 to .264 for the population unweighted kappa. 
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7.  Krippendorff's (1980) alpha .  This statistic is alleged to be an improvement 
over Cohen's kappa, since it also "corrects" for chance agreements and  is a 
function of both agreements and disagreements.  For these data it is .130.  (See 
the webpage entitled "Computing Krippendorff's Alpha-Reliability".)   "Alpha" is a 
bad choice for the name of this statistic, since it can be easily confused with 
Cronbach's (1951) alpha.  
 
8.  Contingency coefficient.  Not recommended; it also does not reflect ordinality 
and its range is not from the usually-desirable -1 to +1 or 0 to +1. 
 
9.  Rank correlation.  Not recommended; there are too many "ties". 
 
10.  Pearson's r.  Also not recommended; it would treat the two variables as 
interval-level, which they definitely are not.  [I would guess, however, that over 
half of you would have done just that!] 
 
A third (and final) example 
 
One of the most common research contexts is a true experiment in which each 
subject is randomly assigned to an experimental group or to a control group and 
the two groups are compared on some continuous variable in order to determine 
whether or not, or the extent to which, the treatment as operationalized in the 
experimental condition has had an effect.  Here X is a dichotomous (1, 0) 
nominal independent variable and Y is a continuous dependent variable.  An 
example of such a context was provided by Dretzke (2001) in her book on the 
use of Excel for statistical analyses:  
 
"A researcher wanted to find out if dreaming increased as a result of taking three 
milligrams of Melatonin before going to sleep each night.  Nineteen people were 
randomly assigned to one of two treatment conditions: Melatonin (n = 10) and 
Placebo (n = 9).  Each morning the number of dreams recalled were reported 
and tallied over a one-week period. "  (p. 152)  Here are the data: 
 
Melatonin (X = 1)  Placebo (X = 0) 
 
21    12 
18    14 
14    10 
20          8 
11    16 
19          5 
  8          3 
12          9 
13    11 
15 
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1.  Displaying the data.  The listing of the 19 "scores" on the dependent  variable 
in two columns (without identifiers), with 10 of the scores under the "Melatonin" 
column (experimental group) and 9 of the scores under the "Placebo" column 
(control group) seems at least necessary if not sufficient.  It might be advisable to 
re-order the scores in each column from high to low or from low to high, however, 
and/or display the data graphically, as follows: 
 
         -                                                 * 
     20.0+                                                                * 
         -                                                                    * 
 Y       -                                                                   * 
         - 
         -      * 
     15.0+                                                                * 
         -      *                                                             * 
         -                                                                    * 
         -      *                                                             * 
         -      *                                                             * 
     10.0+  *  
         -      * 
         -      *                                                             * 
         - 
         - 
      5.0+   * 
         - 
         -      * 
                +---------+---------+---------+---------+---------+------X        
            0.00      0.20      0.40      0.60      0.80      1.00 
  
  
2.  Descriptive statistics.  Most data analysts would be interested in the mean 
and standard deviation of the dependent variable for each group, and the 
difference between the two means.  (If there were an outlier or two, the medians 
and the ranges might be preferred instead of, or in addition to, the means and 
standard deviations.)  And since the relationship between the two variables (X = 
type of treatment and Y = number of dreams recalled) is of primary concern, the 
point-biserial correlation between X and Y (another special case of Pearson's r) 
should also be calculated.  For the given data those summary statistics are: 
 
Melatonin:  mean = 15.1; standard deviation = 4.3   (median = 14.5; range = 13)   
 
Placebo:      mean =   9.8; standard deviation = 4.1   (median = 10.0; range = 13) 
 
Difference between the means = 15.1 - 9.8 = 5.3 
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Correlation between X (type of treatment) and Y (number of dreams recalled) = 
.56 (with the Melatonin group coded 1 and the Placebo group coded 0) 
 
3.  Inferential statistics.  Almost everyone would carry out a two independent 
samples one-tailed t test.  That would be inadvisable, however, for a number of 
reasons.  First of all, although the subjects were randomly assigned to treatments 
there is no indication that they were randomly sampled.  [See the opposing views 
of Levin, 1993 and Shaver, 1993 regarding this distinction.  Random sampling, 
not random assignment, is one of the assumptions underlying the t test. ]  
Secondly, the t test assumes that in the populations from which the observations 
were drawn the distributions are normal and homoscedastic (equal spread).  
Since there is apparently only one population that has been sampled (and that 
not randomly sampled) and its distribution is of unknown shape, that is another 
strike against the t test.  (The sample observations actually look like they've been 
sampled from rectangular, i.e., uniform, distributions and the two samples have 
very similar variability, but that doesn't really matter; it's what's going on in the 
population that counts.)   
 
The appropriate inferential analysis is a randomization test (sometimes called a 
permutation test)--see, for example, Edgington (1995)--where the way the scores 
(number of dreams recalled) happened to fall into the two groups subsequent to 
the particular randomization employed is compared to all of the possible ways 
that they could have fallen, under the null hypothesis that the treatments are 
equally effective and the Melatonin group would always consist of 10 people and 
the Placebo group would always consist of 9 people.  [If the null hypothesis were 
perfectly true, each person would recall the same number of dreams no matter 
which treatment he/she were assigned to.]  The number of possible ways is 
equal to the number of combinations of 19 things taken 10 at a time (for the 
number of different allocations to the experimental group; the other 9 would 
automatically comprise the control group), which is equal to 92378, a very large 
number indeed.  As an example, one of the possible ways would result in the 
same data as above but with the 21 and the 3 "switched".  For that case the 
Melatonin mean would be 13.3 and the Placebo mean would be 11.8, with a 
corresponding point biserial correlation of .16 between type of treatment and 
number of dreams recalled. 
 
I asked John Pezzullo [be sure to visit his website some time, particularly the 
Interactive Stats section] to run the one-tailed randomization test for me.  He very 
graciously did so and obtained a p-value of .008 (the difference between the two 
means is statistically significant at the .01 level) and so it looks like the Melatonin 
was effective (if it's good to be able to recall more dreams than fewer!). 
 
Difficult cases 
 
The previous discussion makes no mention of situations where, say, X is a multi-
categoried ordinal variable and Y is a ratio-level variable.  My advice:  Try if at all 
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posssible to avoid such situations, but if you are unable to do so consult your 
favorite statistician.   
 
The bottom line(s) 
 
If you are seriously interested in investigating the relationship between two 
variables, you should attend to the following matters, in the order in which they 
are listed: 
 
1.  Phrase the research question in as clear and concise a manner as possible.  
Example:  "What is the relationship between height and weight?" reads better 
than "What is the relationship between how tall you are and how much you 
weigh?" 
 
2.  Always start with design, then instrumentation, then analysis.  For the 
height/weight research question, some sort of correlational design is called for, 
with valid and reliable measurement of both variables, and employing one or 
more of the statistical analyses discussed above.  A stratified random sampling 
design (stratifying on sex, because sex is a moderator of the relationship 
between height and weight), using an electronic stadiometer to measure height 
and an electronic balance beam scale to measure weight, and carrying out 
conventional linear regression analyses within sex  would appear to be optimal.  
 
3.  Interpret the results accordingly. 
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CHAPTER 21:  SPECIFY, HYPOTHESIZE, ASSUME, OBTAIN, TEST, OR 
PROVE? 
 

I am constantly amazed that many researchers don't understand the differences 
among the six verbs "specify", "hypothesize", "assume", "obtain", "test", and 
"prove". 
 
An example 
 
Consider the following example:  You're interested in the relationship between 
height and weight, and you would like to carry out a study of that relationship for 
a simple random sample of some large population.  
 
What do you SPECIFY?  If you plan to use traditional statistical inference 
(significance testing) you need to specify the magnitudes of tolerable probabilities 
of Type I (alpha) and Type II (beta) errors before you see the data.  (For the latter 
you can specify the power you want rather than the tolerable probability of a 
Type II error, where power = 1 - beta.)  If you plan to use interval estimation you 
need to specify how confident you want to be with the finding you'll get and the 
tolerable margin of error (half-width of the confidence interval), also before you 
see the data. 
 
What do you HYPOTHESIZE?  If you plan to use significance testing you need to 
hypothesize both a null value (or set of values) for a particular parameter and an 
alternative value (or set of values) for that parameter.  If you plan to use interval 
estimation you need not, nay cannot, hypothesize any values beforehand. 
 
What do you ASSUME?  For significance testing you need to assume the 
independence of the observations and random sampling (which you have), and 
you might need to assume a normal distribution of the observations in the 
population from which the sample is to be drawn.  You might also need to 
assume homogeneity of variance, homogeneity of regression, and/or other 
things.  For interval estimation the assumptions are the same.  For Bayesian 
inference you need to consult your local friendly statistician. 
 
What do you OBTAIN?  For both significance testing and interval estimation the 
first thing you obtain is the appropriate sample size necessary for your 
specifications, before you embark upon the study.  Upon completion of the study 
you obtain the relevant descriptive statistics, p-values, actual confidence 
intervals, and the like. 
 
What do you TEST?  For significance testing you test the null hypothesis against 
the alternative hypothesis.  For interval estimation there is nothing to test per se. 
 
What do you PROVE?  Nothing. 
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So what's the problem? 
 
1.  Some people say you calculate (obtain) power for a study.  No, you specify 
the power you want (directly; or indirectly by specifying the tolerable probability of 
a Type II error, which is 1 minus power).  There is such a thing as post hoc 
power in which power is calculated after the fact for the effect size actually 
obtained, but it is a worthless concept.  See below for more about post hoc 
power. 
 
2.  Some people say you specify the sample size.  No, unless you're stuck with a 
particular sample size.  As indicated above, you determine (calculate, obtain) the 
appropriate sample size. 
 
3.  Some people say you assume the null hypothesis to be true until, or unless, 
rejected.  No, you hypothesize it to be true (although you usually hope that it 
isn't!), along with an alternative hypothesis, which you usually hope to be true. 
 
4.  Some people say you hypothesize that the population distribution is normal.  
No, you assume that (sometimes). 
 
5.  Some people say you prove the null hypothesis to be true if you don't reject it.  
No, you calculate the probability of getting the statistic you got, or anything more 
discrepant from the null-hypothesized parameter, if the null hypothesis is true.  If 
that conditional probability is greater than your pre-specified alpha level, you 
cannot reject the null-hypothesized parameter.  But that doesn't mean you've 
proven it to be true.   
 
Some of those same people say you prove the null hypothesis to be false if you  
reject it.  No; if the conditional probability is less than your pre-specified alpha 
you reject the null-hypothesized parameter.  But that doesn't mean you've proven 
it to be false 
 
Back to the example 
 
What should you do? 
 
a.  If you're going to use significance testing, you should first SPECIFY alpha and 
beta.  The conventional specifications are .05 for alpha and .20 for beta (power of 
.80), but you should preferably base your choices on the consequences of 
making Type I and Type II errors.  For example, suppose your null hypothesis will 
be that the population correlation is equal to zero and you subsequently reject 
that hypothesis but it's true.  There should be no serious consequence of being 
wrong, other than your running around thinking that there is a non-zero 
relationship between height and weight when there isn't.  In that case you should 
feel free to specify a value for alpha that is more liberal than the traditional .05 
(perhaps .10, double that probability?).   If the null hypothesis of zero is pitted 
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against an alternative hypothesis of, say, .90 (a strong relationship) and you 
subsequently do not reject the null but it's false, you will have missed a golden 
opportunity to be able to accurately predict weight from height.  Therefore, you 
should feel free to decrease beta to .05 (increase power to.95) or even less. 
 
b.  If you're going to use interval estimation, you should first SPECIFY the 
maximum margin of error you will be able to tolerate when you make your 
inference from sample to population, along with the associated specification of 
how confident you want to be in making that inference.  The former might be 
something like .10 (you'd like to come that close to the population correlation).  
The latter is conventionally taken to be 95% but, like alpha and beta in 
significance testing, is always "researcher's choice". 
 
c.  Once those specifications have been made, the next step is to use one of the 
various formulas and tables that are available for determining (OBTAINING) the  
sample size that will satisfy the specifications.  If you've intellectualized things 
properly, it will be a "Goldilocks sample" (not too large, not too small, but just 
right). 
 
d.  For significance testing you are now ready to HYPOTHESIZE: one value (or 
set of values) for a parameter for the null hypothesis, and a competing value (or 
set of values) for the alternative hypothesis.  For a study of the relationship 
between two variables (in your case, height and weight), the null-hypothesized 
parameter is almost always zero, i.e., the conservative claim that there is no 
relationship.  Things are much trickier for the alternative hypothesis.  You might 
want to hypothesize a particular value other than zero, e.g., .60, if you believe 
that the relationship is positive and reasonably large.  (You probably would not 
want to hypothesize something like .98 because you can't imagine the 
relationship to be that strong.)  Or you might not  want to stick your neck out that 
far, so you might merely hypothesize that the correlation in the population is 
positive.  (That is the conventional alternative hypothesis for a relationship study, 
whether or not it is actually stated.)  There are other possibilities for the 
alternative hypothesis, but those should do for the present. 
 
e.  For interval estimation you get off easy, because there are no values to 
hypothesize.  You have made your speciifications regarding tolerable margin of 
error and degree of confidence, but you are uninterested, unwilling, or unable to 
speculate what the direction or the magnitude of the relationship might be. 
 
No matter whether you choose to use significance testing or interval estimation, if 
the Pearson product-moment correlation coefficient is to be the statistic of 
principal interest you will need to ASSUME that in the population there is a 
bivariate normal distribution.  If you prefer to rank-order the heights and weights 
(and lose some information) and use Spearman's rank correlation, that 
assumption is not necessary. 
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f.  You're now ready to draw (OBTAIN) your sample, collect (OBTAIN) the actual 
heights and weights, and calculate (OBTAIN) the sample correlation.  If you've 
chosen the significance testing approach you can TEST the null hypothesis of no 
relationship against whatever alternative hypothesis you thought to be relevant, 
and see whether the p-value corresponding to the sample correlation is less than 
or greater than your pre-specified alpha.  If it is less, the sample correlation is 
statistically significant; if it is greater, the sample correlation is not.  If you've 
chosen the interval estimation approach, you can construct (OBTAIN) the 
confidence interval around the sample correlation and make the inference that 
you are X% confident that the interval "captures" the unknown population 
correlation. 
 
g.  You will not have PROVEN anything, but if you've chosen the significance 
testing route you will have made the correct inference or you will have made 
either a Type I error (by rejecting a true null) or a Type II error (by not rejecting a 
false null) but there's no way you would be subject to a Type I error and a Type II 
error (you can't both reject and not reject the null).  Unfortunately, alas, you will 
never know for sure whether you're right or not, but "the odds" will usually be in 
your favor.  Similarly, if you've chosen interval estimation your inference that the 
parameter has been captured or has not been captured can be either right or 
wrong and you won't know which.  But once again "the odds" will be in your 
favor.  That should be comforting. 
 
What you should not do 
 
The first thing you should not do is use both significance testing AND interval 
estimation.  As you might already know, a confidence interval consists of all of 
the values of a parameter that are "unrejectable" with a significance test.  There 
is an unfortunate tendency these days to report the actual p-value, e.g., .003,  
from a significance test ALONG WITH a confidence interval (usually 95%) 
around the obtained statistic.  
 
The second thing you should not do is report the so-called post hoc (or 
retrospective or observed) power, along with or (worse yet) instead of the a priori 
(ordinary) power.  Post hoc power adds no important information, but has 
unfortunately been incorporated into some computer packages, e.g., SPSS's 
Analysis of Variance routines.  It is perfectly inversely related to p-value.  
 
Both things drive me up a wall.  Please don't do either of them.  Thank you. 
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CHAPTER 22:  THE INDEPENDENCE OF OBSERVATIONS  
 
What this chapter is NOT about 
 
It is not about observation as the term is used in psychology, e.g., when the 
behavior of children at play is observed through one-way windows in a laboratory 
setting.  It is also not about observational research as that term is used in 
epidemiology, i.e., as a type of research different from true experimental 
research, in that no variables are manipulated by the researchers themselves.  
And it is not about independent variables or independent samples, except 
tangentially. 
 
What this paper IS about   
 
It is concerned with the term "observation" defined as a measurement taken on 
an entity (usually a person).  It might be a univariate observation, e.g., my height 
(71); a bivariate observation, e.g., my height and my weight (71, 145); or a 
multivariate observation, e.g., my sex, age, height, and weight (M, 85, 71, 145).  
If I were a twin (I'm not, but the name Thomas does mean "twin" in Aramaic), I 
could be interested in analyzing a data set that includes the bivariate observation 
for me and the bivariate observation for my twin, which might be something like 
(70, 150). 
 
What is meant by the term "independence of observations" 
 
Two or more observations are said to be independent if knowing one of them 
provides no information regarding the others.  Using the same example of my 
height and weight, and my twin's height and weight, if you knew mine, you knew I 
had a twin, but you didn't know his/her (we could be "identical" or "fraternal") 
height and weight, you would suspect (and rightly so) that those two observations 
would not be independent. 
 
Why it is important 
 
For virtually every statistical analysis, whether it be for an experiment or a non-
experiment, for an entire population or for a sample drawn from a population, the 
observations must be independent in order for the analysis to be defensible.  
"Independence of observations" is an assumption that must be satisfied, even in 
situations where  the usual parametric assumptions of normality, homogeneity of 
variance, homogeneity of regression, and the like might be relaxed. 
 
So what is the problem? 
 
The problem is that it is often difficult to determine whether the observations 
obtained in a particular study are or are not independent.  In what follows I will try 
to explain the extent of the problem, with examples; provide at least one way to 
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actually measure the degree of independence of a set of observations; and 
mention some ways of coping with non-independence. 
 
Some examples 
 
1.  In an article I wrote about thirty years ago (Knapp, 1984), I gave the following 
example of a small hypothetical data set: 
 
Name  Height  Weight 
 
Sue  5'6"  125# 
Ginny  5'3"  135# 
Ginny  5'3"  135# 
Sally  5'8"  150# 
 
Those four observations are not independent, because Ginny is in the data twice.  
(That might have happened because of a clerical error; but you'd be surprised 
how often people are counted in data more than once.  See below.)  To calculate 
their mean height or their mean weight, or the correlation between their heights 
and their weights, with n = 4, would be inappropriate.  The obvious solution would 
be to discard the duplicate observation for Ginny and use n = 3.  All three of 
those observations would then be independent. 
 
2.  Later in that same article I provided some real data for seven pairs of 16-year-
old, Black, female identical twins (you can tell I like heights, weights, and twins): 
 
Pair   Heights (in inches)  Weights (in pounds) 
 
1 (Aa)   A:68    a:67   A:148    a:137 
2 (Bb)   B:65    b:67   B:124    b:126 
3 (Cc)   C:63    c:63   C:118    c:126 
4 (Dd)   D:66    d:64   D:131    d:120 
5 (Ee)   E:66    e:65   E:119    e:124 
6 (Ff)   F:62     f:63   F:119     f:130 
7(Gg)   G:66    g:66   G:114    g:104 
 
Are those observations independent?  Hmmm.  Nobody is in the data more than 
once, but as forewarned above there is something bothersome here. You might 
want to calculate the mean height of these women, for example, but how would 
you do it?  Add up all of the heights and divide by 14?  No; that would ignore the 
fact that a is a twin of A, b is a twin of B, etc.  How about averaging the heights 
within each pair and finding the average of those seven averages?  No; that 
would throw away some interesting within-pair data.  How about just finding the 
average height for the capital letter twins?  No; that would REALLY be wasteful 
of data.  And things are just as bad for the weights. 
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The plot thickens if you were to be interested in the relationship between height 
and weight for the seven twin-pairs.  You could start out all right by plotting Twin 
A's weight against Twin A's height, i.e., Y=148, X=68.  When it comes to Twin a 
you could plot 137 against 67, but how would you indicate the twinship?  (In that 
same article I suggested using colored data points, a different color for each twin-
pair.)  Likewise for B and b, C and c, etc.  That plot would soon get out of hand, 
however, even before any correlation between height and weight were to be 
calculated. 
 
Bottom line:  These fourteen observations are not independent of one another.   
 
3.  In a recent study, Russak, et al. (2010) compared the relative effectiveness of 
two different sunscreens (SPF 85 and SPF 50) for preventing sunburn.  Each of 
the 56 participants in the study applied SPF85 to one side of the face and SPF50 
to the other side (which side got which sunscreen was randomly determined).  
They presented the results in the following table: 
 
Sun Protection Factor  Sunburned   Not Sunburned 
 
 85           1               55 
 
 50           8     48 
 
Sainani (2010) included that table in her article as an example of non-
independent observations, because it implied there were 56 participants who 
used SPF 85 and 56 other participants who used SPF50, whereas in reality 56 
participants used both.  She (Sainani) claimed that the following table displayed 
the data correctly: 
       
     SPF-50 Side 
 
    Sunburned    Not Sunburned 
SPF-85 Side 
 
Sunburned                 1   0 
 
Not sunburned                7           48 
 
The observations in this second table are independent.  The best way to spot 
non-independent observations in such tables is to calculate row totals, column 
totals, and the grand total.  If the grand total is greater than the number of 
participants there is a non-independence problem. 
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What to do about possibly non-independent observations 
 
The best thing to do is to try to avoid the problem entirely, e.g., by not doing twin 
research and by not having people serve as their own controls.  But that might be 
too much of a cop-out.  Twin research is important; and the advantages of having 
people serve as their own controls could outweigh the disadvantages (see 
Knapp, 1982 regarding the latter matter, where I actually come down on the side 
of not doing so). 
 
One thing that should always be tried is to get a measure of the degree of 
independence.  In a conference presentation many years ago, Glendening 
(1976) suggested a very creative approach, and I summarized it in Knapp (1984).  
For the case of k aggregates, with n observations per aggregate, a measure of 
independence, I, is found by taking an F-type ratio of the variance of the 
aggregate means to one-nth of the variance of the within-aggregate 
observations.  If that ratio is equal to 1,  the observations are  perfectly 
independent.  If that ratio is greater than 1, the observations are not independent.  
For a simple hypothetical example, consider a case of k = 2 and n = 3 where the 
observations for the two aggregates are (1,7,13) and (5,11, 17), respectively.  
The variance of the aggregate means is equal to 4; the within-aggregate variance 
is equal to 12 (all variances are calculated by dividing by the number of things, 
not one less than the number of things); one-third of the within-aggregate 
variance is also equal to 4; ergo I = 1 and the observations are independent.  
(They even look independent, don't they?)  For another hypothetical example 
with the same dimensions, consider (1,2,3) and (4,5,6).  For those observations I 
is equal to 81/8 or 10.125, indicating very non-independent obervations.  (They 
look independent, but they're not.  It all has to do with the similarity between the  
aggregate observations and observations you might expect to get when you draw 
random samples from the same population.  See Walker, 1928, regarding this 
matter for correlations between averages vs. correlations between individual 
measurements.) 
 
For the heights of the seven pairs of twins (each pair is an aggregate), with k = 7 
and n = 2, I is equal to 13.60.  For the weights, I is equal to 8.61.  The height 
observations and the weight observations are therefore both non-independent, 
with the former "more non-independent" than the latter.  (Some prior averaging is 
necessary, since the within-aggregate variances aren't exactly the same.)  That 
is intuitively satisfying, since height is more hereditary than weight in general, 
and for twins in particular. 
 
If a more sophisticated approach is desired, non-independence of observations 
can be handled by the use of intraclass correlations, hierarchical linear analysis,  
generalized estimating equations, or analysis of mixed effects (fixed and 
random).  Those approaches go beyond the scope of the present chapter, but 
the interested reader is referred to the articles by Calhoun, et al. (2008) and by 
McCoach and Edelson (2010). 
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What the consequences are of treating dependent observations as independent 
 
We've already seen for the sunscreen example that one of the consequences is 
an artificial inflation of the sample size (112 rather than 56).  An associated 
consequence is an artificial increase in the degree of statistical significance and 
an artificial decrease in the width of a confidence interval (again see Sainani, 
2010 re Russak, et al., 2010).  A third consequence, for the correlation between 
two variables, is that the "total" correlation for which the data for two or more 
aggregates are "pooled" together is usually larger than the within-aggregate 
correlations.  Consider, for instance, the correlation between height and weight 
for males and females combined into one aggregate.  Since males are generally 
both taller than and heavier than females, the scatter plot  for the pooled data is 
longer and tighter than the scatter plots for males and for females taken 
separately.   
 
What some other methodological critics say about independence of observations  
 
One thing that bothers me is that most authors of statistics textbooks have so 
very little to say about the independence of observations, other than listing it as 
one of the assumptions that must be satisfied in a statistical analysis.  Bland and 
Altman (1994) are particularly hard on textbook authors regarding this.  (In my 
opinion, Walker & Lev, 1953 is the only textbook with which I am familiar that 
says everything right, but even they devote only a couple of pages to the topic.)  
 
Some critics have carried out extensive reviews of the research literature in their 
various fields and found that treating non-independent observations as though 
they were independent is very common.  My favorite articles are by Sauerland, et 
al. (2003), by Bryant, et al. (2006), and by Calhoun, et al. (2008).  Sauerland, et 
al. chastise some researchers for the way they handle (or fail to handle) fingers 
nested within hands nested in turn within patients who are undergoing hand 
surgery.  Bryant, et al. are concerned about limbs nested within patients in 
orthopedic research.  Calhoun, et al. discuss the problem of patient nested within 
practice in medical research in general. 
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CHAPTER 23:  N (or n) vs. N - 1 (or n - 1) REVISITED 
  
Prologue 
 
Over 45 years ago I (Knapp,1970) wrote an article regarding when you should 
use N and when you should use N - 1 in the denominators of various formulas for 
the variance, the standard deviation, and the Pearson product-moment 
correlation coefficient. I ended my "pro N" article with this sentence: "Nobody 
ever gets an average by dividing by one less than the number of observations." 
(page 626). 
 
There immediately followed three comments (Landrum, 1971; Games, 1971; 
Hubert, 1972) concerning the matter of N vs. N - 1. Things were relatively quiet 
for the next few years, but the controversy has erupted several times since, 
culminating in a recent clever piece by Speed (2012) who offered a cash prize  
[not yet awarded] to the person who could determine the very first time that a 
discussion was held on the topic. 
 
The problem 
 
Imagine that you are teaching an introductory ("non-calculus") course in 
statistics. [That shouldn't be too hard. Some of you who are reading this might 
be doing that or have done that.] You would like to provide your students with 
their first formulas for the variance and for the standard deviation. Do you put N, 
N -1, n, or n - 1 in the denominators? Why? 
 
Some considerations 
 
1. Will your first example (I hope you'll give them an example!) be a set of data 
(real or artificial) for a population (no matter what its size)?  I hope so. 
N is fine, and is really the only defensible choice of the four possibilities. You 
never subtract 1 from the number of observations in a population unless you 
want to calculate the standard error of some statistic using the finite population 
correction (fpc).  And almost nobody uses n to denote the population size. 
 
2. Will that first example be for a sample? 
 
N would be OK, if you use N for sample size and use something like Npop for 
population size. [Yes, I have seen Npop.] 
 
N -1 would be OK for the sample variance, if you always use N for sample size, 
you have a random sample, and you would like to get an unbiased estimate of 
the population variance; but it's not OK for the sample standard deviation. (The 
square root of an unbiased estimate of a parameter is not an unbiased estimate 
of the square root of the parameter. Do you follow that?) 
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n would be OK for both the sample variance and the sample standard deviation, 
and is my own personal preference. 
 
n - 1 would be OK for the sample variance, if you always use n for sample size, 
you have a random sample, and you would like to get an unbiased estimate of 
the population variance; but it's not OK for the sample standard deviation (for the 
same reason indicated for N - 1). 
 
3. What do most people do? 
 
I haven't carried out an extensive survey, but my impression is that many authors 
of statistics textbooks and many people who have websites for the teaching of 
statistics use a sample for a first example, don't say whether or not the sample is 
a random sample, and use n - 1 in the denominator of the formula for the 
variance and in the denominator of the formula for the standard deviation. 
 
The massive compendium (1886 pages) on statistical inference by Sheskin 
(2011) is an interesting exception.  On pages 12-13 of his book he provides all of 
the possible definitional formulas for standard deviation and variance (for 
population or sample, N or n, N-1 or n-1, biased or unbiased estimator, ů or s).  
He makes one mistake, however.  On page 12 he claims that the formula for the 
sample standard deviation with n-1 in the denominator yields an unbiased 
estimator of the population standard deviation.  As indicated above, it does not. 
(He later corrects the error in a footnote on page 119 with the comment:  ñStrictly 
speaking, s~ [his notation] is not an unbiased estimate of ů, although it is usually 
employed as such.ò  Thatôs a bit tortured [how does he know that?], but I think 
you get the idea.) 
 
Another commendable exception is Richard Lowry's VassarStats website.  For 
his "Basic Sample Stats" routine he gives the user the choice of n or n-1.  Nice. 
 
4. Does it really matter? 
 
From a practical standpoint, if the number of observations is very large, no. But 
from a conceptual standpoint, you bet it does, no matter what the size of N or n. 
In the remainder of this chapter I will try to explain why; identify the principal 
culprits; and recommend what we should all do about it. 
 
Why it matters conceptually 
 
A variance is a measure of the amount of spread around the arithmetic mean of a 
frequency distribution, albeit in the wrong units. My favorite example is a 
distribution of the number of eggs sold by a super market in a given month. No 
matter whether you have a population or a sample, or whether you use in the 
denominator the number of observations or one less than the number of 
observations, the answer comes out in "squared eggs". In order to get back to 
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the original units (eggs) you must "unsquare" by taking the square root of the 
variance, which is equal to the standard deviation. 
 
A variance is a special kind of mean. It is the mean of the squared differences 
(deviations) from the mean. A standard deviation is the square root of the mean 
of the squared differences from the mean, and is sometimes called "the root 
mean square". 
 
You want to get an "average" measure of differences from the mean, so you 
want to choose something that is in fact an "average".  You might even prefer 
finding the mean of the absolute values of the differences from the mean to 
finding the standard deviation.  It's a much more intuitive approach than squaring 
the differences, finding their average, and then unsquaring at the end. 
 
The culprits 
 
In my opinion, there are two sets of culprits. The first set consists of some 
textbook authors and some people who have websites for the teaching of 
statistics who favor N - 1 (or n - 1) for various reasons (perhaps they want their 
students to get accustomed to n - 1 right away because they'll be using that in 
their calculations to get unbiased estimates of the population variance, e.g., in 
ANOVA) or they just don't think things through. 
 
The second set consists of two subsets. Subset A comprises the people who 
write the software and the manuals for handheld calculators. I have an old TI-60 
calculator that has two keys for calculating a standard deviation. One of the keys 
is labelled ůn and the other is labelled ůn-1. The guidebook calls the first "the 
population deviation"; it calls the second "the sample deviation" (page 5-6). It's 
nice that the user has the choice, but the notation is not appropriate [and the 
word ñstandardò before ñdeviationò should not be omitted].  Greek letters are 
almost always reserved for population parameters, and as indicated above you 
don't calculate a population standard deviation by having in the denominator one 
less than the number of observations.  
 
Subset B comprises the people who write the software and the manuals for 
computer packages such as Excel, Minitab, SPSS, and SAS. All four of those 
use n - 1 as the default. [Good luck in trying to get the calculation using n.] 
 
n + 1 [not the magazine] 
 
Believe it or not, there are a few people who recommend using n + 1 in the 
denominator, because that produces the minimum mean squared error in 
estimating a population variance.  See, for example, Hubert (1972), Yatracos 
(2005), and Biau and Yatracos (2012).  It all depends upon what you want to 
maximize or minimize. 
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Degrees of freedom 
 
Is it really necessary to get into degrees of freedom when first introducing the 
variance and the standard deviation?  I don't think so.  It's a strange concept (as 
Walker, 1940, pointed out many years ago) that students always have trouble 
with, no matter how you explain it. The number of unconstrained pieces of data? 
Something you need to know in order to use certain tables in the backs of 
statistics textbooks?  Whatever. 
 
Pearson r 
 
For people who use n in the denominator for the sample variance and sample 
standard deviation, the transition to the Pearson product-moment correlation 
coefficient is easy. Although there are at least 13 different formulas for the 
Pearson r (Rodgers & Nicewander, 1988; I've added another one), the simplest 
to understand is × zx  zy  /n , where the z's are the standard scores for the two 
variables X and Y that are to be correlated. The people who favor n - 1 for the 
standard deviation, and use that standard deviation for the calculation of the z 
scores, need to follow through with n - 1 in the denominator of the formula for 
Pearson r. But that ruins "the average cross-product of standard scores" 
interpretation. If they don't follow through with n - 1, they're just plain wrong. 
 
Proportions and the t sampling distribution 
 
It is well known that a proportion is a special kind of arithmetic mean.  It is also 
well known that if the population standard deviation is unknown the t sampling 
distribution for n ï 1 degrees of freedom should be used rather than the normal 
sampling distribution when making statistical inferences regarding a population 
mean.  But it turns out that the t sampling distribution should not be used for 
making statistical inferences regarding a population proportion.  Why is that? 
 
One of the reasons is simple to state:  If you are testing a hypothesis about a 
population proportion you always ñknowò the population standard deviation, 
because the population standard deviation is equal to the square root of the 
product of the population proportion multiplied by 1 minus the population 
proportion.  In this case, if you donôt want to use the binomial sampling 
distribution to test the hypothesis, and youôll settle for a ñlarge sampleò 
approximation, you use the normal sampling distribution.  All of this has nothing 
to do with t. 
 
Problems start to arise when you want to get a confidence interval for the 
population proportion.  You donôt know what the actual population proportion is 
(thatôs why youôre trying to estimate it!), so you have to settle for the sample 
proportion when getting an interval estimate for the population proportion.  What 
do you do?  You calculate ñp hatò (the sample proportion) plus or minus some 



 161 

number c of standard errors (where the standard error is equal to the standard 
deviation of the product of ñp hatò and ñ1- p hatò divided by the sample size n).   
 
How does t get into the act (for the interval estimation of p)?  It doesnôt.  Some 
people argue that you should use n -1 rather than n in the formula for the 
standard error and use the t sampling distribution for n -1 degrees of freedom in 
order to make the inference.  Not so, argued Goodall (1995), who explained why 
(it involves the definition of t as a normal divided by the square root of a chi-
square).  Bottom line:  For proportions there is no n-1 and no t.  Itôs n and normal. 
 
[Incidentally, using the sample ñp hatò to get a confidence interval for a population 
p creates another problem.  If ñp hatò is very small (no matter what p happens to 
be), and n is small, that confidence interval will usually be too tight.  In the 
extreme, if ñp hatò is equal to 0 (i.e., there are no ñsuccessesò) the standard error 
is also equal to 0, indicating no sampling error whatsoever, which doesnôt make 
sense.  There is something called the ñRule of Threeò that is used to get the 
upper bound of 3/n for a confidence interval for p when there are no ñsuccessesò 
in a sample of size n.  See, for example, Jovanovic and Levy, 1997.] 
 
A call to action 
 
If you happen to be asked to serve as a reviewer of a manuscript for possible 
publication as an introductory statistics textbook, please insist that the authors 
provide a careful explanation for whatever they choose to use in the 
denominators for their formulas for the variance, the standard deviation, and the 
Pearson r, and how they handle inferences concerning proportions.  If you have 
any influence over the people who write the software and the manuals for 
computer packages that calculate those expressions, please ask them to do the 
same.  I have no such influence. I tried very hard a few years ago to get the 
people at SPSS to take out the useless concept of "observed power" from some 
of its ANOVA routines. They refused to do so. 
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CHAPTER 24:  STANDARD ERRORS 
 
Introduction 
 
What is an error?  It is a difference between a "truth" and an "approximation". 
 
What is a standard error?  It is a standard deviation of a sampling distribution. 
 
What is a sampling distribution?  It is a frequency distribution of a statistic for an 
infinite number of samples of the same size drawn at random from the same 
population. 
 
How many different kinds of standard errors are there?  Aye, there's the rub.    
Read on. 
 
The standard error of measurement 
 
The standard error of measurement is the standard deviation of a distribution of a 
person's or an object's obtained measurements around its "true score" (what it 
"should have gotten").  The obtained measurements are those that were actually 
obtained or could have been obtained by applying a measuring instrument an 
infinite (or at least a very large) number of times.  For example, if a person's true 
height (only God knows that) is 69 inches and we were to measure his(her) 
height a very large number of times, the obtained measurements might be 
something like the following:  68.25, 70.00, 69.50, 70.00, 68.75, 68.25. 69.00, 
68.75, 69.75, 69.25,...  The standard error of measurement provides an 
indication of the reliability (consistency) of the measuring instrument. 
 
The formula for the standard error of measurement is ůã 1 - ɟ, where ů is the 
standard deviation of the obtained measurements and ɟ is the reliability of the 
measuring instrument. 
 
The standard error of prediction (aka the standard error of estimate) 
 
The standard error of prediction is the standard deviation of a frequency 
distribution of measurements on a variable Y around a value of Y that has been 
predicted from another variable X.  If Y is a "gold standard" of some sort, then the 
standard error of prediction provides an indication of the instrument's criterion-
related validity (relevance). 
 
The formula for the standard error of prediction is ůyã 1 - ɟxy

2 , where ůy is the 
standard deviation for the Y variable and ɟxy is the correlation between X and Y. 
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The standard error of the mean 
 
The standard error of the mean is the standard deviation of a frequency 
distribution of sample means around a population mean for a very large number 
of samples all of the same size.  The standard error of the mean provides an 
indication of the goodness of using a sample mean to estimate a population 
mean. 
 
The formula for calculating the standard error of the mean is ů/ãn , where ů is the 
standard deviation of the population and n is the sample size.  Since we usually 
don't know the standard deviation of the population, we often use the sample 
standard deviation to estimate it. 
 
The standard errors of other statistics 
 
Every statistic has a sampling distribution.  We can talk about the standard error 
of a proportion (a proportion is actually a special kind of mean), the standard 
error of a median, the standard error of the difference between two means, the 
standard error of a standard deviation (how's that for a tongue twister?), etc.  But 
the above three kinds come up most often. 
 
What can we do with them? 
 
We can estimate, or test a hypothesis about, an individual person's "true score" 
on an achievement test, for example.  If he(she) has an obtained score of 75 and 
the standard error of measurement is 5, and if we can assume that obtained 
scores are normally distributed around true scores, we can "lay off" two standard 
errors to the left and two standard errors to the right of the 75 and say that we 
are 95% confident that his(her) true score is "covered" by the interval from 65 to 
85.  We can also use that interval to test the hypothesis that his(her) true score is 
90.  Since 90 is not in that interval, it would be rejected at the .05 level. 
 
The standard error of prediction works the same way.  Lay it off a couple of times 
around the Y that is predicted from X, using the regression of Y on X to get the 
predicted Y, and carry out either interval estimation or hypothesis testing. 
 
The standard error of the mean also works the same way.  Lay it off a couple of 
times around the sample mean and make some inference regarding the mean of 
the population from which the sample has been randomly drawn.   
 
So what is the problem? 
 
The principal problem is that people are always confusing standard errors with 
"ordinary" standard deviations, and standard errors of one kind with standard 
errors of another kind.  Here are examples of some of the confusions: 
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1.  When reporting summary descriptive statistics for a sample, some people 
report the mean plus or minus the standard error of the mean rather than the 
mean plus or minus the standard deviation.  Wrong.  The standard error of a 
mean is not a descriptive statistic. 
 
2.  Some people think that the concept of a standard error refers only to the 
mean.  Also wrong. 
 
3.  Some of those same people think a standard error is a statistic.  No, it is a 
parameter, which admittedly is usually estimated by a statistic, but that doesn't 
make it a statistic. 
 
4.  The worst offenders of lumping standard errors under descriptive statistics are 
the authors of many textbooks and the developers of statistical "packages" for 
computers, such as Excel, Minitab, SPSS, and SAS.  For all of those, and for 
some other packages, if you input a set of data and ask for basic descriptive 
statistics you get, among the appropriate statistics, the standard error of the 
mean. 
 
5.  [A variation of #1]  If the sample mean plus or minus the sample standard 
deviation is specified in a research report, readers of the report are likely to 
confuse that with a confidence interval around the sample mean, since 
confidence intervals often take the form of a ± b, where a is the statistic and b is 
its standard error or some multiple of its standard error. 
 
So what should we do about this? 
 
We should ask authors, reviewers, and editors of manuscripts submitted for 
publication in scientific journals to be more careful about their uses of the term 
"standard error".  We should also write to officials at Excel, Minitab, SPSS, SAS, 
and other organizations that have statistical routines for different kinds of 
standard errors, and ask them to get things right.  While we're at it, it would be a 
good idea to ask them to default to n rather than n-1 when calculating a variance 
or a standard deviation.   
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CHAPTER 25:  IN (PARTIAL) SUPPORT OF NULL HYPOTHESIS 
SIGNIFICANCE TESTING 
 
Introduction             
 
For the last several years it has been fashionable to deride the use of null 
hypothesis significance testing (NHST) in scientific research, especially the 
testing of "nil" hypotheses for randomized trials in which the hypothesis to be 
tested is that there is zero difference between the means of two experimental 
populations.  The literature is full of claims such as these: 
 
"The null hypothesis, taken literally (and that's the only way you can take it in 
formal hypothesis testing), is always false in the real world."  (Cohen, 1990, p. 
1308) 
 
"It is foolish to ask 'Are the effects of A and B different'?  They are always 
different...for some decimal place."  (Tukey, 1991, p. 100) 
 
"Given the many attacks on it, null hypothesis testing should be dead."   
(Rindskopf, 1997, p. 319) 
 
"[NHST is] surely the most bone-headedly misguided procedure ever 
institutionalized in the rote training of science students."  (Rozeboom, 1997, p. 
335) 
 
"Logically and conceptually, the use of statistical significance testing in the 
analysis of research data has been thoroughly discredited."  (Schmidt & Hunter, 
1997, p. 37)  
 
[1997 was a good year for attacks against NHST.  In the same year there  
appeared an entire book entitled "What if there were no significance tests?" 
(edited by Harlow, Mulaik, & Steiger, 1997).  It consisted of several chapters, 
some of which were pro NHST and some of which were con (mostly con).  That 
book followed upon an earlier book entitled "The significance test controversy" 
(edited by Morrison & Henkel, 1970)] 
 
In what follows in this paper, which has a title similar to that of Hagen (1997) and 
is in the spirit of Abelson (1997a, 1997b), I would like to resurrect some of the 
arguments in favor of  NHST, but starting from a different perspective, viz., that of 
legal and medical decision-making. 
 
Two very important null hypotheses (and their alternatives) 
 
The nulls: 
1.  The defendant is innocent. 
2.  The patient is well. 
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The alternatives: 
1.  The defendant is guilty. 
2.  The patient is ill. 
 
Let us consider first "The defendant is innocent".  Unlike most scientific null 
hypotheses that we would like to reject, this hypothesis is an example of a 
hypothesis that we would like to be able to "accept", or at least "not reject", if, of 
course, the defendant is in fact innocent.  How do we proceed? 
 
1.  We (actually the prosecuting attorneys) gather evidence that bears upon the 
defendant's guilt or innocence. 
 
2.  The "sample size" (amount of evidence) ranges from the testimony of one or 
two witnesses to multi-year investigations, depending upon the seriousness of 
the crime that the defendant is alleged to have committed. 
 
3.  The evidence is tested in court, with the attorneys for the defense (often court-
appointed) arguing for the truth of the null hypothesis and with the prosecuting 
attorneys arguing for the truth of the alternative hypothesis. 
 
4.  An inference (verdict) is rendered regarding the hypotheses.  If the null 
hypothesis is rejected, the defendant becomes subject to some sort of penalty 
ranging from a fine or community service to life imprisonment or death.  If the null 
hypothesis is not rejected, the defendant is set free. 
 
5.  No matter what inference is made, we acknowledge that a mistake could be 
made.  We might have made a "Type I error" by rejecting a true null hypothesis, 
in which case an innocent person will have been punished unjustly.  We would 
like to keep the probability of such a decision to be small.  Or we might have 
made a "Type II error" by not rejecting a false null hypothesis, in which case a 
guilty person will have been set free and might commit the same crime again, or 
perhaps an even worse crime.  We would like to keep the probabilities of either of 
those eventualities very small.  Fortunately, we cannot commit both of those 
errors simultaneously, but the probabilities work at cross-purposes.  As we try to 
decrease the probability of making a Type I error we increase the probability of 
making a Type II error, and vice versa.  The only way to keep both probabilities 
small is to increase the sample size, i.e., to obtain more evidence. 
 
[In his very balanced and very long summary of the NHST controversy, 
Nickerson (2000) uses this same analogy to what happens in a U.S. court of 
law.] 
 
Now for "The patient is well".  We all prefer to be well than to be ill, so we often 
seek out medical advice, usually from doctors and/or nurses, to help us in 
deciding which we are at any given time.  How do we proceed? 
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1.  We (ourselves, the doctors, and the nurses) gather evidence that bears upon 
our wellness or our illness.  
 
2.  The "sample size" (amount of evidence) ranges from seeing what happens 
when we say "aaahhh" to the carrying out of various procedures such as MRIs 
and biopsies. 
 
3.   The evidence is tested in the clinic, with everybody hoping that the null 
hypothesis is true and the alternative hypothesis is false.. 
 
4.  An inference (decision) is made regarding the hypotheses.  If the null 
hypothesis is rejected, we are told that we are ill and some treatment is 
recommended.  If the null hypothesis is not rejected, we are relieved to hear that, 
and we are free to leave the clinic. 
 
5.  No matter what inference is made, we acknowledge that a mistake could be 
made.  There might have been a "Type I error" in the rejection of a true null 
hypothesis, in which case we would be treated for an ailment or a disease that 
we don't have.  We would like to keep the probability of such a decision to be 
small.  Or there might have been a "Type II error" in the failure to reject a false 
null hypothesis, in which case we would go untreated for an ailment or a disease 
that we had.  We would like to keep the probabilities of either of those 
eventualities very small.  Fortunately, both of those errors cannot occur 
simultaneously, but the probabilities work at cross-purposes.  As we try to 
decrease the probability of making a Type I error we increase the probability of 
making a Type II error, and vice versa.  The only way to keep both probabilities 
small is to increase the sample size, i.e., to obtain more evidence (have more 
tests taken). 
 
Those two situations are very similar.  The principal differences are (1) the 
parties in the legal example are "rooting for" different outcomes, whereas the 
parties in the medical example are "rooting for" the same outcome; and (2) the 
consequences of errors in the legal example are usually more severe than the 
consequences of errors in the medical example.  Once a defendant has been 
incarcerated for a crime (s)he didn't commit, it is very difficult to undo the damage 
done to that person's life.  Once a defendant has been set free from a crime that 
(s)he did commit, (s)he remains a threat to society.  But if we are not treated for 
our ailment or disease it is possible to seek such treatment at a later date.  
Likewise for being treated for an ailment or a disease that we don't have, the 
principal consequence of which is unnecessary worry and anxiety, unless the 
treatment is something radical that is worse than the ailment or the disease itself. 
 
A null hypothesis that is always true 
 
One of the arguments against NHST is the claim that the null hypothesis is  
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always false. I would like to give an example of a null hypothesis that is always 
true: 
 
The percentage of black cards in a new deck of cards is equal to 50. 
 
What is "null" about that?  It is null because it is directly testable.  There is no 
zero in it, so it is not "nil", but it can be tested by taking a random sample of cards 
from the deck, determining what percentage of the sampled cards is black, and 
making an inference regarding the percentage of black cards in the entire deck 
(the population).  The difference between this example and both the legal 
example and the medical example is that either no error is made (a true null 
hypothesis is not rejected) or a Type I error has been made (a true null 
hypothesis is rejected).  There is no way to make a Type II error.  (Do you see 
why?) 
 
Now for null hypothesis significance testing in research. 
 
First of all it is well to distinguish between a hypothesis imbedded in a theory and 
a hypothesis arising from a theory.  For example, consider the theoretical non-
null hypothesis that boys are better in mathematics than girls are.  One 
operational null hypothesis arising from the theory is the hypothesis that the 
mean score on a particular mathematics achievement test for some population of 
boys is equal to the mean score on that same test for some population of girls.  Is 
that hypothesis ever true?  Some people would argue that those two means will 
always differ by some amount, however small, so the hypothesis is not worth 
testing.  I respectfully disagree.  To put it in a spiritual context, only God knows 
whether or not it is true.  We mere mortals can only conjecture and test.  And that 
brings me to the point that opponents of null-hypothesis-testing always make, 
viz., we should use interval estimation rather than hypothesis testing if we are 
seriously interested in the extent to which boys and girls differ on that 
achievement test. 
 
I have nothing against interval estimation (the use of confidence intervals).  As a 
matter of fact, I generally prefer them to hypothesis tests.  But, 
 
1.  I have said elsewhere (Knapp, 2002):  "If you have hypotheses to test (a null 
hypothesis you may or may not believe a priori and/or two hypotheses pitted 
against one another), use a significance test to test them. If you donôt, 
confidence intervals are fine." (p. 241) 
 
2.  Although interval estimation often subsumes hypothesis testing (if the 
otherwise hypothesized parameter is in the interval, you can't reject it; if it isn't, 
you can and must), there are certain situations where it either does not or it has 
additional problems that are not associated with the corresponding hypothesis 
test.  For example, if you want to make an inference regarding a population 
percentage (or proportion), the hypothesis-testing procedure is straightforward, 
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with the standard error of the percentage being a simple function of the 
hypothesized percentage.  On the other hand, in order to get a standard error to 
be employed in a confidence interval for a percentage you have to use the 
sample percentage, since you don't know the population percentage (you're 
trying to estimate it).  When the number of "successes" in a sample is very small, 
the sample percentage can be a serious under-estimate of the population 
percentage.  This is especially true if the number of "successes" in the sample is 
equal to zero, in which case the use of the sample percentage in the formula for 
the standard error would imply that there is no sampling error at all!  The "Rule of 
three" (Jovanovic & Levy, 1997) is an attempt to cope with such an eventuality, 
but provides only a shaky estimate. 
 
3.  One of the arguments for preferring confidence intervals over hypothesis tests 
is that they go rather naturally with "effect sizes" that are in the original units of 
the dependent variable (i.e., are not standardized), but as Parker (1995) pointed 
out in his comments regarding Cohen's 1994 article, the actual difference 
between two means is often not very informative.  (See his "number of chili 
peppers" example.) 
 
4.  Interval estimation is not the panacea that it is occasionally acclaimed to be.  
For every user of hypothesis testing who says "the probability is less than .05 
that the null hypothesis is true" there is a user of interval estimation who says "I 
am .95 confident that the difference between the two population means varies 
between a and b".   The p value is not an indication of the truth of the null 
hypothesis, and it is the difference between the sample means that varies, not 
the difference between the population means. 
 
5.  We could do both, i.e., use the techniques of NHST power analysis to draw a 
random sample of a size that is "optimal" to test our particular null hypothesis 
against our particular alternative hypothesis (for alpha = .05, for example) but use 
interval estimation with a confidence interval of the corresponding level (.95, for 
example) for reporting the results.  There are sample-size procedures for interval 
estimation directly; however, they are generally more complicated and not as 
readily available as those for NHST.  But one thing we should not do (although 
you wouldn't know it by perusing the recent research literature) is to report both 
the upper and lower limits of the confidence interval AND the actual magnitude of 
the p-value that is found for the hypothesis test.  If we care about 1-Ŭ confidence 
we should only care about whether p is greater than or less than Ŭ.  
 
A compromise 
 
Jones & Tukey (2000) suggested that if we're interested in the difference 
between the means of two populations, A and B, we should investigate the 
difference between the corresponding sample means and then make one of the 
following inferences: 
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1.  The mean of Population A minus the mean of Population B is greater than 0. 
 
2.  The mean of Population A minus the mean of Population B is less than 0. 
 
3.  The sign of the difference is yet to be determined. 
 
Read their article.  You'll like it. 
 
Some recent references 
 
You might have gotten the impression that the problem has gone away by now, 
given that the latest citation so far is to the year 2002.  I assure you that it has 
not.  The controversy regarding the use, abuse, misuse, etc. of NHST is just as 
hot in 2016 as it was in the heyday year of 1997.  Here are a few examples: 
 
1.. LeMire (2010) recommends a different framework as the context for NHST.  
He calls it NHSTAF (the A and the F are for Argument and Framework) and it is 
based upon the work of Toulmin (1958).  It's different, but interesting in its 
defense of NHST.  
 
2.  Lambdin (2012) claims that psychologists know about the weaknesses of 
NHST but many of them go ahead and use it anyhow.  He calls this psychology's 
"dirty little secret".  He goes on to blast significance tests in general and p-values 
in particular (he lists 12 misconceptions about them).  His article is very well 
written and has lots of good references    
 
3.  White (2012), in the first of several promised blogs about NHST, tries to pull 
together most of the arguments for and against NHST, and claims that it is 
important to distinguish between the problems faced by individual researchers 
and the problems faced by the community of researchers.  That blog includes 
several interesting comments made by readers of the blog, along with White's 
replies to most of those comments. 
 
4.  Wood (2013) is an even better blog, accompanied by lots of good comments 
(with Wood's replies), several important references, and great pictures of R.A. 
Fisher, Jerzy Neyman, and Egon Pearson! 
 
5.  Cumming (2013) is a relentless advocate of interval estimation, with the use 
of confidence intervals around sample "effect sizes" and with a heavy reliance on 
meta-analysis.  He calls his approach (presumptuously) "The New Statistics". 
 
A final note 
 
Some of the writers who have contributed to the NHST controversy remind me of 
the radical left and the radical right in American politics; i.e., people who are 
convinced they are correct and those "across the aisle" are not.  A little humility, 
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coupled with the sort of compromise suggested by Jones and Tukey (2000), 
could go a long way toward a solution of this vexing problem. 
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CHAPTER 26:  p-VALUES 
 
I'm not a fan of p-values.  They do have their place, e.g., in testing a null 
hypothesis such as "The proportion of successes is equal to .50" in some well-
defined population, where "success" is "lived" (vs. "died"),  "passed the final 
examination" (vs. "failed the final examination"), etc.  But they do have problems, 
as indicated in what follows. 
 
p and alpha 
 
If I have the historical details right, the famous British statistician R.A. Fisher 
wasn't concerned about specifying alpha (the probability of making a Type I 
error) beforehand and determining whether or not p is less than alpha.  That 
came later with Neyman and Pearson, along with the concept of power.  Fisher 
didn't even intellectualize a hypothesis alternative to the null.  What Fisher 
suggested (not dictated, as some people claim) was for the researcher to specify 
some probability level that was indicative of "chance" and to find out whether or 
not the obtained p-value was less than that.  If so, the sample result was said to 
be (statistically) significant.  He recommended .05 as a reasonable choice.  It 
subsequently became enshrined in the research literature (alas). 
 
p equal to or p less than 
 
Suppose we carry out a study of the relationship between the length and the 
weight of newborn babies.  Something (theory, practice, previous research, 
whatever) leads us to hypothesize that the relationship (Pearson product-
moment correlation coefficient) is equal to .30 for some very large hospital in 
New York City.  We draw a simple random sample of 200 single-birth newborns 
from that population, determine their lengths and weights (actually measuring 
them or getting the information from the hospital records), plot the data, calculate 
the Pearson r, and find that it is equal to .54.  We carry out the significance test 
and discover that the probability of getting an r of .54 or more in a sample of 200 
observations, given that the correlation in the population is .30, is .00002.  [These 
same numbers, except for the .00002, appear in an online piece by Michael T. 
Brannick, albeit in a different artificial context.]  What should we report?  
 
p  is equal to .00002? 
 
p  is less than .00002? 
  
p is less than or equal to .00002?  
 
p is approximately equal to .00002? 
 
p is less than .0001?  (SAS's default for very small p-values) 
 



 175 

Something else? 
 
Does it matter? 
 
Two recent real examples 
 
1.  In a study published in the Annals of Epidemiology, Okosun, et al. (2010) 
reported several findings regarding the association between a continuous version 
of a scale for measuring the Metabolic Risk Syndrome (cMetS) and the usual 
version (MetS).  Table 1 of their article contains p-values concerned with the 
differences among three ethnic groups of adolescents (Non-Hispanic Whites, 
Non-Hispanic Blacks, and Mexican-Americans) on a number of variables (age, 
height, weight, systolic blood pressure, diastolic blood pressure, etc.).  Some of 
those p-values were indicated by p equal to something (e.g., p = 001 for time 
spent watching TV or videos for the females) and others were indicated by p less 
than something (e.g., p <.001 for that same variable for the males).  Post hoc 
tests for pairs of ethnic groups were also carried out, with p < .05 as the only 
indicator of statistical significance. 
 
2.  Hartz, et al. (2014) were concerned with the difference in substance use 
between individuals with severe mental illnesses and individuals in the general 
population.  In Table 3 of their article they report the following p-values for five  
different substance use variables, in addition to their corresponding 95% 
confidence intervals: 
 
Variable      p-value 
 
More than 4 alcoholic drinks per day  1.2 x 10 to the -188th power 
At least 100 cigarettes in lifetime   < 1.0 x 10 to the -325th power 
Daily smoking for more than a month  < 1.0 x 10 to the -325th power 
Marijuana more than 21 times per year  2.6 x 10 to the -254th power 
Recreational drugs more than 10 times  < 1.0 x 10 to the -325th power 
 
[Note that the first and the fourth of those p-values are "equal to" and the other 
three are "less than", with the "less thans" all of the same magnitude.] 
 
My take on the two examples 
 
I see no reason for having some "equal to" p-values and some "less than" p-
values for either example.  For the cMetS example my preference is for 
confidence intervals only (around the differences for the pairs of samples). 
 
The substance use example is more baffling.  To their credit, the authors do 
provide confidence intervals around the obtained odds ratios for the various 
comparisons between the individuals with serious mental illnesses and 
individuals in the general population, but they should have quit there.  The p-
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values do not add any useful additional information and are at least unusual (how 
often have you seen such tiny p-values?) if not wrong (I think they're wrong). 
 
What is your take on p-values in general and these p-values in particular?  
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CHAPTER 27:  p, n, AND t:  TEN THINGS YOU NEED TO KNOW         
 
Introduction 
 
You want to test a hypothesis or construct a confidence interval for a proportion, 
or for the difference between, or for the ratio of, two proportions.  Should you use 
n or n-1 in the denominators for the formulas for the appropriate standard errors?  
Should you use the t sampling distribution or the normal sampling distribution?  
Answers to these and associated questions will be provided in what is to follow. 
 
An example 
 
In the guide that accompanies the StatPac Statistics Calculator, Walonick (1996-
2010)  gives an example of the proportions (he uses percentages, but that 
doesnôt matter) of people who have expressed their plans to vote for Candidate A 
or Candidate B for a particular public office.  The sample size was 107; the two 
proportions were .355 for Candidate A and .224 for Candidate B.  (The other 
people in the sample planned to vote for other candidates.)  How should various 
statistical inferences for this example be handled? 
 
1.  Single sample p and n 

Let p be the sample proportion, e.g., the .355 for Candidate A, for a sample size 
n of 107.  If you want to test a hypothesis about the corresponding population 
proportion ˊ, you should use the binomial sampling distribution to do so.  But 
since tables and computer routines for the binomial sampling distribution for 
(relatively) large sample sizes such as 107 are not readily available, most people 
choose to use approximations to the binomial.  It is well known that for large 
samples p is normally distributed around ˊ with standard error equal to the 
square root of ˊ(1-ˊ)/n, just as long as ˊ is not too close to 0 or to 1.  Some 
people use n-1 in the denominator rather than n, and the t sampling distribution 
rather than the normal sampling distribution.  Theyôre wrong.  (See, for example, 
Goodall, 1995.) 
 
The situation is similar for a confidence interval for ˊ, but since ˊ is unknown the 
sample proportion p must be used in its stead.  Again, n and normal; thereôs no 
n-1 and no t. 
 
2.  The difference between two independent pôs for their two nôs 
 
Let me change the example for the purpose of this section by considering the 
.355 for Candidate A in Survey #1 conducted by one organization vs. a 
proportion of .298 (I just made that up) for Candidate A in Survey #2 conducted 
by a different organization, so that those pôs can be considered to be 
independent.  For the usual null hypothesis of no difference between the two 
corresponding ˊôs, the difference between p1 and p2 is approximately normally 
distributed around 0 with a standard error that is a function of the two pôs and 
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their respective nôs.  Again, no n-1ôs and no t.   Likewise for getting a confidence 
interval for the difference between the two ˊôs. 
 
3.  The difference between two non-independent pôs and their common n 
 
Once again modifying the original example, consider the p of .355 for Candidate 
A at Time 1 vs. a p of .298 for Candidate A at Time 2 for the same people.  This 
is a case for the use of McNemarôs test (McNemar,1947).  The chi-square 
sampling distribution is most commonly employed for either testing a hypothesis 
about the difference between the corresponding ˊôs or constructing a confidence 
interval for that difference, but there is an equivalent normal sampling distribution 
procedure.  Both use n and thereôs no t. 
 
4.  The ratio of two independent pôs 
 
This doesnôt usually come up in research in the social sciences, but it is very 
common in epidemiological research in the analysis of relative risks and odd 
ratios.  As you might expect, things get very messy mainly because ratios almost 
always have more complicated sampling distributions than differences have.  If 
you want to test the ratio of the p of .355 for Survey #1 to the p of .298 for Survey 
#2 (see above) against 1 or construct a confidence interval for the ratio of the two 
corresponding ˊôs, see the compendium by Fleiss, Levin, and Paik (2003) for all 
of the gory details.  You will find that there are no n-1ôs and no tôs. 
 
5.   The difference between two pôs for the same scale 
 
Iôve saved the inference for the original Walonick example for last, because it is 
the most controversial.  Let us consider the significance test only, since that was 
the inference in which Walonick was interested. 
 
In order to test the significance of the difference between the .355 for Candidate 
A and the .224 for Candidate B, you need to use the ratio of the difference (.355-
,224 = .131) to the standard error of that difference.  The formula for the 
approximate standard error (see Kish, 1965; Scott & Seber, 1983; and Franklin, 
2007) is the square root of the expression  [(p1+ p2 ) ï (p1 ï p2 )2  ]/n, where n = 
107 for this example.  The relevant sampling distribution is normal, not t.  
Why is this controversial?  First of all, it doesnôt make sense to some people 
(especially me).  Itôs like testing the significance of the difference between the 
proportion of people who respond ñstrongly agreeò and the proportion of people 
who respond ñagreeò to a question on an opinion poll.  Or testing the significance 
of the difference between the proportion of people who are 5ó7ò tall and the 
proportion of people who are 5ô10ò tall.  The frequency distribution for the various 
scale points should be sufficient.  Does anybody really care if the difference 
between the proportions for any two of them is statistically significant?  And what 
significance level should be chosen?  Are both Type I errors and Type II errors 
relevant? 
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Secondly, those two proportions in the Walonick example are bothersomely [is 
there such a word?] non-independent, especially if both are very close to .5.  
Apparently the multinomial sampling theory takes care of that, but Iôm still 
skeptical.  
 
Thirdly, if it makes sense to you to carry out the test, be sure to use the correct 
standard error (indicated above).  Most people donôt, according to Franklin.  Iôm 
afraid that Walonick used the wrong formula.  He also used t.  I canôt get his ratio 
of 1.808 to come out no matter what I use for the standard error, whether for n or 
n-1, or for ñpooledò pôs or ñunpooledò pôs. 
 
In the remainder of this chapter I would like to close with five additional 
comments (6 through 10) regarding p, n, and t. 
 
6.   It perhaps goes without saying, but Iôd better say it anyhow:  The p Iôm using 
here is a sample proportion, not a ñp-valueò for significance testing.  And the ˊ is 
a population proportion, not the ratio of the circumference of a circle to its 
diameter. 
 
7.  I have a ñthingò about the over-use of n-1 rather than n.  The authors of many 
statistics textbooks first define the sample variance and the sample standard 
deviation with n-1 in the denominator, usually because they want their readers to 
get used to that when carrying out a t test or an ANOVA.  But a variance should 
be an average (an arithmetic mean), and nobody gets an average by dividing by 
one less than the number of entities that contribute to it.  And some of those 
same authors make the mistake of claiming that the standard deviation with n-1 
in the denominator provides an unbiased estimate of the population standard 
deviation.  Thatôs true for the variance but not for the standard deviation.  For 
more on this see my N vs. N-1 article (Knapp, 1970) and Chapter 23 of this book. 
 
8.  I also have a ñthingò about people appealing to the use of the t sampling 
distibution rather than the normal sampling distribution for ñsmallò samples.  It is 
the absence of knowledge of the population variance, not the size of the sample, 
that warrants the use of t rather than normal. 
 
9.  I favor explicit inferences to finite populations rather than inferences for finite 
populations that use traditional infinite population procedures with a finite 
population ñcorrectionò involving n (the sample size) and N (the population size).  
I realize that my preference gets me into all sorts of difficult formulas, but I guess 
Iôm willing to pay that price.  All real populations that are of interest in scientific 
research are finite, no matter how large or how small. 
 
10.  I prefer percentages to proportions (see Chapter 15) and to talk about, for 
example, a 95 percent confidence interval for a population percent (I use 
ñpercentageò and ñpercentò interchangeably), but percentages are much more 
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understandable to students, particularly those who use the word ñproportionò in 
contexts such as ña is in the same proportion to b as c is to dò.  
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CHAPTER 28:  THE ALL-PURPOSE KOLMOGOROV-SMIRNOV TEST FOR 
TWO INDEPENDENT SAMPLES  
 
Introduction 
 
You have data for a random sample of n1 subjects from Population 1 and a 
random sample of n2 subjects from Population 2.  You'd like to test the 
significance of the difference between those two samples.  What should you do?  
Carry out the traditional t test?  Perhaps.  But you probably should use the 
Kolmogorov-Smirnov test. 
 
You have randomly assigned a random sample of n subjects to two treatment 
conditions (experimental and control), with n1 subjects in the experimental group 
and n2 subjects in the control group, where n1 + n2 = n, and you'd like to test the 
statistical significance of the effect on the principal outcome variable.  What 
should you use there?  The t test?   No.  Again, the better choice is the 
Kolmogorov-Smirnov test. 
 
What is the Kolmogorov-Smirnov test?  In what follows I will try to explain what it 
is, why it has not been used very often, and why it is an "all-purpose" significance 
test as well as an "all-purpose" procedure for constructing confidence intervals 
for the difference between two independent samples. 
 
What it is 
 
The Kolmogorov-Smirnov test, hereinafter referred to as the K-S test for two 
independent samples, was developed by Smirnov (1939), based upon previous 
work by Kolmogorov (1933).  [See Hodges, 1957.]  It compares the differences 
between two cumulative relative frequency distributions.   
 
Consider the following example, taken from Goodman (1954): 
 
Sample 1:  1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5   (n1 = 15) 
 
Sample 2:  0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 5   (n2 = 15) 
 
The frequency distributions for Sample 1 are: 
 
Value  Freq.  Rel. Freq.  Cum. Freq. Cum. Rel. Freq. 
 
0   0  0/15 =  0    0   0/15 =   0  
1   1  1/15 =   .067     1   1/15 =    .067 
2   4  4/15 =   .267    5   5/15 =    .333 
3   0  0/15 =  0    5   5/15 =    .333 
4   4  4/15 =   .267    9   9/15 =    .600 
5   6  6/15 =   .400  15  15/15 = 1.000 
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The corresponding frequency distributions for Sample 2 are: 
 
Value  Freq.  Rel. Freq.  Cum. Freq. Cum. Rel. Freq. 
 
0  4  4/15 =  .267   4   4/15 =    .267 
1  2  2/15 =  .133   6   6/15 =    .400 
2  4  4/15 =  .267  10  10/15 =   .667 
3  2  2/15 =  .133  12  12/15 =   .800 
4  0  0/15 =  0  12  12/15 =   .800 
5  3  3/15 =  .200  15  15/15 = 1.000 
 
The test statistic for the K-S test is the largest difference, D, between 
corresponding cumulative relative frequencies for the two samples.  For this 
example the largest difference is for scale value 3, for which D = .800 - .333 = 
.467.  How likely is such a difference to be attributable to chance?  Using the 
appropriate formula and/or table and/or computerized routine (more about those 
later) the corresponding p-value is .051 (two-tailed).  If the pre-specified level of 
significance, Ŭ, is .05 and the alternative hypothesis is non-directional the null 
hypothesis of no difference between the two population distributions cannot be 
rejected.   
 
Nice.  But what's wrong with using the t test?  And why hasn't the K-S test been 
used more often?  Let me take the first question first. 
 
Why not t? 
 
There are at least three things wrong with using the t test for such data: 
 
1.  The t test tests only the significance of the difference between the two sample 
means...nothing else.   The K-S test is sensitive to differences throughout the 
entire scale. 
 
2.  The data might have come from a six-point Likert-type ordinal scale for which 
means are not appropriate; e.g., if the 0 is the leftmost scale value and might 
have nothing at all to do with "none".  (As you undoubtedly know, there has been 
a never-ending controversy regarding treating ordinal scales as interval scales, to 
which I have contributed [Knapp, 1990, 1993], and to little or no avail.  But see 
Marcus-Roberts & Roberts [1987] for the best resolution of the controversy that 
I've ever read.) 
 
3.  Even if means are appropriate the t test assumes that the two populations 
from which the samples have been drawn have normal distributions and equal 
variances.  Those two asumptions are often very difficult to justify, robustness 
considerations to the contrary notwithstanding. 
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But isn't there a problem with loss of power by using this test?  Not really.  Wilcox 
(1997) has shown that the power of the K-S test can be quite high compared to 
that of various methods for testing differences between means.  
 
Now for the second question. 
 
Why has the K-S test for independent samples not been used more often? 
 
At the beginning of his article Goodman (1954) says: "Recent results and tables 
on this topic have been prepared which contribute toward establishing the 
Kolmogorov-Smirnov statistic as a standard nonparametric tool of statistical 
analysis."  (p. 160).  That was in 1954.  It's now more than sixty years later, and  
the K-S test is definitely not a "standard nonparametric tool", as Wilcox (1997) 
has documented.  There are several reasons: 
 
1.  It's not even mentioned in some nonparametric statistics textbooks, chapters  
within general statistics textbooks, and methodological articles.  Gibbons (1993), 
for example, treats the Sign, Wilcoxon (Mann-Whitney), Kruskal-Wallis, and 
Friedman tests, but there is nary a word about the K-S test.   
 
2.  Some people might be under the impression that the K-S test is strictly a 
goodness-of-fit test.  There is indeed a K-S test of goodness-of-fit, but 
researchers seem to have been able to distinguish the chi-square test for 
independent samples from the chi-square test of goodness-of-fit, so if they can 
handle two chi-square tests they should be able to handle two K-S tests.  (And  
the K-S test for two samples has even been extended to the case of three or 
more samples, just like the two-sample chi-square test has.  See Conover [1980]  
and Schroer & Trenkler [1995] for details.) 
 
3.  There might be further concerns that it's too complicated and the necessary 
computer software is not readily available.  Both concerns would be unfounded.  
It's simple to carry out, even by hand, as the above example in Goodman (1954) 
and comparable examples in Siegel and Castellan (1988) attest.  Tables for 
testing the significance of D have been around for a long time (as have formulas 
for the case of two large samples) and there are at least two excellent internet 
sites where all the user need do is enter the data for the two samples and the 
software does the rest (see below). 
 
K-S test confidence intervals 
 
Many researchers prefer confidence intervals to significance tests, and they 
argue that you get significance tests "for free" when you establish confidence 
intervals around the test statistics.  (If the null-hypothesized parameter is in the 
interval you can't reject it; if it isn't you can.)  Sheskin's (2011) chapter on the 
Kolmogorov-Smirnov test for two independent samples (his Test 13) includes a 
procedure for constructing confidence intervals for D.   
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K-S test software 
 
SAS includes a routine for both the two-sample K-S test and the goodness-of-fit 
K-S test.  SPSS has only the latter, as does Minitab.  Excel has neither, but there 
is a downloadable add-in that has both.  There are two stand-alone routines that 
can carry out the two-sample K-S test.  One of them (see the web address 
http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html) requires the entry 
of the raw data for each subject in each sample, with n1 and n2 each between 10 
and 1024.  That is the one I used to check Goodman's (1954) analysis (see 
above).  The other (downloadable at Hossein Arsham's website via John 
Pezzullo's marvelous StatPages.org website) requires the entry of the frequency 
(actual, not relative) of each of the observations for each of the samples.  I used 
that to run the two-sample K-S test for an interesting but admittedly artificial set 
of data that appeared in Table 1 of an article by Roberson, Shema, Mundfrom, 
and Holmes (1995). Here are the data: 
 
Sample 1:   
 
Value  Freq.  Rel. Freq        Cum. Freq. Cum. Rel. Freq. 
 
1    0  0/70 = 0      0  0/70 = 0 
2  52  52/70 = .743          52  52/70 =   .743 
3  11  11/70 = .157          63  63/70 =   .900 
4    0  0/70 = 0          63  63/70 =   .900 
5    7  7/70 =   .100          70  70/70 = 1.000 
 
Sample 2: 
 
Value        Freq.  Rel. Freq        Cum. Freq. Cum. Rel. Freq. 
 
1  37  37/70 =  .529          37  37/70 =   .529 
2  10  10/70 =  .143          47  47/70 =   .671 
3    0  0/70 =  0          47  47/70 =   .671 
4    0  0/70 =  0          47  47/70 =   .671 
5  23  23/70 =  .329          70  70/70 = 1.000  
 
This set of data is a natural for the K-S test but they do not discuss it among their 
suggested nonparametric alternatives to the t test.  Although their article is 
concerned primarily with dependent samples, they introduce alternatives to t via 
this example involving independent samples.  The two sample means are 
identical (2.457) but they argue, appropriately, that there are some very large 
differences at other scale points and the t test should not be used.  (The p-value 
for t is 1.000.)  They apply the Wilcoxon test and get a p-value of .003.  Using the 
K-S test for the same data, John Pezzullo and I get D = .5285714 (for the scale 
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value of 0) and the p-value is .000000006419.  [Sorry to report so many decimal 
places, but that D is huge and that p is tiny.] 
 
[Caution:  For some reason the Arsham software requires at least six different 
categories (scale values) for the outcome variable used in the test.  But John  
figured out that all you need to do is fill in frequencies of zero for any "ghost" 
category and everything will be fine.  For the example just considered, the 
frequencies we entered for Sample 1 were 0, 52, 11, 0, 7, and 0 (that sixth 0 is 
for a non-existing sixth category) and for Sample 2 were 37, 10, 0, 0, 23, and 0 
(likewise).  Strange.] 
 
In what sense is the K-S test "all-purpose"? 
 
I've already shown that the K-S test for independent samples can be used in 
observational research for testing whether or not two samples have been 
randomly drawn from the same population distribution and in experimental 
research for testing a treatment effect when subjects have been randomly 
assigned to treatment conditions.  Confidence interval procedures are also 
available. And since it "works" for ordinal scales as well as for interval scales 
(both of which can have cumulative relative frequency distributions), it can even 
be used for dichotomous dummy-coded (0, 1) outcome variables: All you need to 
determine is D (the difference for 0, since the difference for 1 has to be equal to 
zero) and either test it for statistical significance or put a confidence interval 
around it. 
 
But surely the K-S test must have some drawbacks, or researchers wouldn't have 
neglected it for so long?  There is one somewhat serious drawback:  If the data 
for the underlying populations are discrete rather than continuous (which is 
always the case for dichotomies and for ordinal variables such as Likert-type 
scales), it has been shown (Noether, 1963) that the K-S test is slightly 
ñconservativeò, i.e., the difference is ñmore significantò than the test has indicated.  
Otherwise, the only assumption that needs to be satisfied is the random 
assumption (random sampling of populations and/or random assignment to 
treatment conditions), but that assumption  is common to all inferential 
procedures (and, alas, is violated a lot!). 
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CHAPTER 29:  TO POOL OR NOT TO POOL: THAT IS THE CONFUSION 

Prologue 

Isn't the English language strange? Consider the word "pool". I go swimming in a 
pool. I shoot pool at the local billiards parlor. I obtain the services of someone in 
the secretarial pool to type a manuscript for me. I participate in a pool to try to 
predict the winners of football games. I join a car pool to save on gasoline. You 
and I pool our resources. 

And now here I am talking about whether or not to pool data?! With 26 letters in 
our alphabet I wouldn't think we'd need to use the word "pool" in so many 
different ways. (The Hawaiian alphabet has only 12 letters...the five vowels and 
seven consonants H,K,L,M,N,P,and W; they just string lots of the same letters 
together to make new words.) 

What is the meaning of the term "pooling data"? 

There are several contexts in which the term "pooling data" arises. Here are most 
of them: 

1. Pooling variances 

Let's start with the most familiar context for pooling data (at least to students in 
introductory courses in statistics), viz., the pooling of sample variances in a t test 
of the significance of the difference between two independent sample means. 
The null hypothesis to be tested is that the means of two populations are equal 
(the populations from which the respective samples have been randomly 
sampled). We almost never know what the population variances are (if we did 
we'd undoubtedly also know what the populations means are, and there would be 
no need to test the hypothesis), but we often assume that they are equal, so we 
need to have some way of estimating from the sample data the variance that the 
two populations have in common. I won't bore you with the formula (you can look 
it up in almost any statistics textbook), but it involves, not surprisingly, the two 
sample variances and the two sample sizes. You should also test the "poolability" 
of the sample variances before doing the pooling, by using Bartlett's test or 
Levene's test, but almost nobody does; neither test has much power. 

[Note: There is another t test for which you don't assume the population 
variances to be equal, and there's no pooling. It's variously called the Welch-
Satterthwaite test or the Behrens-Fisher test. It is the default t test in Minitab. If 
you want the pooled test you have to explicitly request it.] 
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2. Pooling within-group regression slopes 

One of the assumptions for the appropriate use of the analysis of 
covariance(ANCOVA) for two independent samples is that the regression of Y 
(the dependent variable) on X (the covariate) is the same in the two populations 
that have been sampled. If a test of the significance of the difference between the 
two within-group slopes is "passed" (the null hypothesis of equality of slopes is 
not rejected), those sample slopes can be pooled together for the adjustment of 
the means on the dependent variable. If that test is "failed" (the null hypothesis of 
equality of slopes is rejected) the traditional ANCOVA is not appropriate and the 
Johnson-Neyman technique (Johnson & Neyman, 1936) must be used in its 
place. 

3. Pooling raw data across two (or more) subgroups 

This is the kind of pooling people often do without thinking through the 
ramifications. For example, suppose you were interested in the relationship 
between height and weight for adults, and you had a random sample of 50 males 
and a random sample of 50 females. Should you pool the data for the two sexes 
and calculate one correlation coefficient, or should you get two correlation 
coefficients (one for the males and one for the females)? Does it matter? 

The answer to the first question is a resounding "no" to the pooling. The answer 
to the second question is a resounding "yes". Here's why. In almost every 
population of adults the males are both taller and heavier than the females, on 
the average. If you pool the data and create a scatter plot, it will be longer and 
skinnier than the scatterplots for the two sexes treated separately, thereby 
producing a spuriously high correlation between height and weight. Try it. You'll 
see what I mean. And read the section in David Howell's (2007) statistics 
textbook (page 265) regarding this problem. He provides an example of real data 
for a sample of 92 college students (57 males, 35 females) in which the 
correlation between height and weight is .60 for the males, .49 for the females, 
and .78 for the two sexes pooled together. 

4. Pooling raw data across research sites 

This is the kind of pooling that goes on all the time (often unnoticed) in 
randomized clinical trials. The typical researcher often runs into practical 
difficulties in obtaining a sufficient number of participants at a single site and 
"pads" the sample size by gathering data from two or more sites. In the analysis 
he(she) almost never tests the treatment-by-site interaction, which might "be 
there" and would constrain the generalizability of the findings. 

5. Pooling data across time 

There is a subtle version of this kind of pooling and a not-so-subtle version. 
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Researchers often want to combine data for various years or minutes or 
whatever, for each unit of analysis (a person, a school, a hospital, etc.), usually 
by averaging, in order to get a better indicator of a "typical" measurement. 
They(the researchers) usually explain why and how they do that, so that's the 
not-so- subtle version. The subtle version is less common but more dangerous. 
Here the mistake is occasionally made of treating the Time 2 data for the same 
people as though they were different people from the Time 1 people. The sample 
size accordingly looks to be larger than it is, and the "correlatedness" of the data 
at the two points in time is ignored, often to the detriment of a less sensitive 
analysis. (Compare, for example, data that should be treated using McNemar's 
test for correlated samples with data that are appropriately handled by the 
traditional chi-square test of the independence of two categorical variables.) 

6. Pooling data across scale categories 

This is commonly known as "collapsing" and is frequently done with Likert-type 
scales. Instead of distinguishing between those who say "strongly agree" from 
those who say "agree'", the data for those two scale points are combined into 
one over-all "agree" designation. Likewise for "strongly disagree" and "disagree". 
This can result in a loss of information, so it should be used as a last resort. 

7. Pooling "scores" on different variables 

There are two different ways that data can be pooled across variables. The first 
way is straightforward and easy. Suppose you were interested in the trend of 
average (mean) monthly temperatures for a particular year in a particular city. 
For some months you have temperatures in degrees Fahrenheit and for other 
months you have temperatures in degrees Celsius. (Why that might have 
happened is not relevant here.) No problem. You can convert the Celsius 
temperatures to Fahrenheit by the formula F = (9/5)C + 32; or you can convert 
the Fahrenheit temperatures to Celsius by using the formula C = (5/9) (F - 32). 

The second way is complicated and not easy. Suppose you were interested in 
determining the relationship between mathematical aptitude and mathematical 
achievement for the students in your particular secondary school, but some of 
the students had taken the Smith Aptitude Test and other students had taken the 
Jones Aptitude Test. The problem is to estimate what score on the Smith test is 
equivalent to what score on the Jones test. This problem can be at least 
approximately solved if there is a normative group of students who have taken 
both the Smith test and the Jones test, you have access to such data, and you 
have for each test the percentile equivalent to each raw score on each test. For 
each student in your school who took Smith you use this "equipercentile method" 
to estimate what he(she) "might have gotten" on Jones. Assign to him(her) the 
Jones raw score equivalent to the percentile rank that such persons obtained on 
Smith. Got it? Whew! 



 190 

8. Pooling data from the individual level to the group level 

This is usually referred to as "data aggregation". Suppose you were interested in 
the relationship between secondary school teachers' numbers of years of 
experience and the mathematical achievement of their students. You can't use 
the individual student as the unit of analysis, because each student doesn't have 
a different teacher (except in certain tutoring or home-school situations). But you 
can, and should, pool the mathematical achievement scores across students in 
their respective classrooms in order to get the correlation between teacher years 
of experience and student mathematical achievement. 

9. Pooling cross-sectional data to approximate panel data 

Cross-sectional data are relatively easy to obtain. Panel (longitudinal) data are 
not. Why? The principal reason is that the latter requires that the same people 
are measured on each of the occasions of interest, and life is such that people 
often refuse to participate on every occasion or they are unable to participate on 
every occasion (some even die). And you might not even want to measure the 
same people time after time, because they might get bored with the task and just 
"parrot back" their responses, thereby artificially inflating the correlations 
between time points. 

What has been suggested is to take a random sample of the population at Time 
1, a different random sample at Time 2,...etc. and compare the findings across 
time. You lose the usual sensitivity provided by having repeated measurements 
on the same people, but you gain some practical advantages. 

There is a more complicated approach called a cross-sectional-sequential 
design, whereby random samples are taken from two or more cohorts at various 
time points. Here is an example (see Table 1, below) taken from an article that 
Chris Kovach and I wrote several years ago (Kovach & Knapp, 1989, p. 26). You 
get data for five different ages (60, 62, 64, 66, and 68) for a three-year 
study(1988, 1990, 1992). Nice, huh? 
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10. Pooling findings across similar studies 

This very popular approach is technically called "meta-analysis" (the term is due 
to Glass, 1976), but it should be called "meta-synthesis" (some people do use 
that term), because it involves the combining of results, not the breaking-down of 
results. I facetiously refer to it occasionally as "a statistical review of related 
literature", because it has come to replace almost all narrative reviews in certain 
disciplines. I avoid it like the plague; it's much too hard to cope with the problems 
involved. For example, what studies (published only? published and 
unpublished?) do you include? How do you determine their "poolability"? What 
statistical analysis(es) do you employ in combining the results? 

Summary 

So, should you pool or not? Or, putting it somewhat differently, when should you 
pool and when should you not? The answer depends upon the following 
considerations, in approximately decreasing order of importance: 

1. The research question(s). Some things are obvious. For example, if you are 
concerned with the question "What is the relationship between height and weight 
for adult females?" you wouldn't want to toss in any height&weight data for adult 
males. But you might want to pool the data for Black adult females with the data 
for White adult females, or the data for older adult females with the data for 
younger adult females. It would be best to test the poolability before you do so, 
but if your sample is a simple random sample drawn from a well-defined 
population of adult females you might not know or care who's Black and who's 
White. On the other hand, you might have to pool if you don't have an adequate 
number of both Blacks and Whites to warrant a separate analysis for each. 

2. Sample size. Reference was made in the previous paragraph to the situation 
where there is an inadequate number of observations in each of two (or more) 
subgroups, which would usually necessitate pooling (hopefully poolable entities). 

3. Convenience, common sense, necessity 

In order to carry out an independent samples t test when you assume equal 
population variances, you must pool. If you want to pool across subgroups, be 
careful; you probably don't want to do so, as the height and weight example (see 
above) illustrates. When collapsing Likert-type scale categories you might not 
have enough raw frequencies (like none?) for each scale point, which would 
prompt you to want to pool. For data aggregation you pool data at a lower level to 
produce data at a higher level. And for meta-analysis you must pool; that's what 
meta-analysis is all about. 
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A final caution 

Just as "acceptance" of a null hypothesis does not mean it is necessarily 
true,"acceptance" in a poolability test does not mean that poolability is 
necessarily justified. 
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CHAPTER 30:  LEARNING STATISTICS THROUGH BASEBALL 
 
Introduction 
 
Several years ago I wrote a little book entitled Learning statistics through playing 
cards (Knapp, 1996), in which I tried to explain the fundamental concepts of 
statistics (both descriptive and inferential) by using an ordinary deck of playing 
cards for generating the numbers.  In 2003 Jim Albert wrote Teaching statistics 
through baseball.  What follows can be thought of as a possible sequel to both 
books, with its emphasis on descriptive statistics and the tabletop dice game "Big 
League Baseball". 
 
The reason I am restricting most of this presentation to descriptive statistics is 
that there is no random sampling in baseball (more about this later), and random 
sampling is the principal justification for generalizing from a sample (a part) to a 
population (the whole).  But it has been said, by the well-known statistician John 
Tukey and others, that there has been too much emphasis on inferential statistics 
anyhow.  See his classic 1977 book, Exploratory data analysis (EDA) and/or any 
of the popular computer packages that have implemented EDA. 
 
The price you might have to pay for reading this chapter is not in money (it's free) 
but in the time and effort necessary to understand the game of baseball.  
(Comedian Bob Newhart's satirical routine about the complications of baseball is 
hilarious!)  In the next couple of sections I will provide the basics.  If you think you 
need to know more, watch a few games at your local Little League field or a few 
Major League games on TV (especially if Los Angeles Dodgers broadcaster Vin 
Scully is the announcer). 
 
How the game is played 
 
As many of you already know, there are nine players on each team and the 
teams take turns batting and fielding.  The nine players are: 
 
1.  The pitcher (who throws the ball that the batter tries to hit) 
2.  The catcher (who catches any ball the batter doesn't hit and some others) 
3.  The first baseman (who is "the guardian" of the base that the batter must first 
run to after hitting the ball) 
4.  The second baseman (the "guardian" of the next base) 
5.  The shortstop (who helps to guard second base, among other things) 
6.  The third baseman (the "guardian" of that base) 
7.  The left fielder (who stands about 100 feet behind third base and hopes to 
catch any balls that are hit nearby) 
8.  The center fielder (who is positioned similarly behind second base) 
9.  The right fielder (likewise, but behind first base). 
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The object of the game as far as the batters are concerned is to run counter-
clockwise around the bases (from first to second to third, and back to "home 
plate" where the ball is batted and where the catcher is the "guardian").  The 
object of the game as far as the fielders are concerned is to prevent the batters 
from doing that. 
 
Some specifics: 
 
1.  There are nine "innings" during which a game is played.  An inning consists of 
each team having the opportunity to bat until there are three "outs", i.e., three 
unsuccessful opportunities for the runners to reach the bases before the ball 
(thrown by the fielders) gets there.  If the runner reaches the base before the ball 
does, he is credited with a "hit". 
 
2.  Each batter can choose to swing the bat or to not swing the bat at the ball 
thrown by the pitcher.  If the batter chooses to swing, he has three opportunities 
to try to bat the ball; failure on all three opportunities results in three "strikes" and 
an "out".  If the batter chooses to not swing and the ball has been thrown where 
he should have been able to bat it, that also constitutes a strike.  But if he 
chooses to not swing and the pitcher has not thrown the ball well, the result is 
called a "ball".  He (the batter) is awarded first base if he refrains from swinging 
at four poor pitches.  (Check out what Bob Newhart has to say about why there 
are three strikes and four balls!) 
 
In reality there are often many combinations of swings and non-swings that result 
in successes or failures.  For example, it is quite common for a batter to swing 
and miss at two good pitches, to not swing at two bad pitches, and to eventually 
swing, bat the ball, run toward first base, and get there either before or after the  
ball is caught and thrown to the first baseman. 
 
3.  The team that scores the more "runs" (encirclings of the bases by the batters) 
after the nine innings are played is the winner. 
 
There are several other technical matters that I will discuss when necessary. 
 
What does this have to do with statistics? 
 
My favorite statistic is a percentage (see Chapter 15 of this book), and 
percentages abound in baseball.  For example, one matter of great concern to a 
batter is the percentage of time that he bats a ball and arrives safely at first base 
(or even beyond) before the ball gets there.  If a batter gets one successful hit 
every four times at bat, he is said to have a "batting average" of 1/4 or 25% or 
.250.  (In baseball such averages are always carried out to three decimal places.)  
That's not very good, but is fairly typical.  The average batting average of the 
regular players in the Major Leagues (there are two of them, the American 
League and the National League, with 15 teams in each league) has remained 



 195 

very close to .260 for many, many years.  (See the late paleontologist Stephen 
Jay Gould's 1996 book, Full house, and his 2004 book, Triumph and tragedy in 
Mudville.) 
 
Similarly, a matter of great concern to the pitcher is that same percentage of the 
time that a batter is successful against him.  (One of the neat things about 
baseball is the fact that across all of the games played, "batting average of" for 
the batters must be equal to "batting average against" for the pitchers.)  Batters 
who bat successfully much higher than .250 and pitchers who hold batters to 
averages much lower than .250 are usually the best players. 
 
Other important percentages are those for the fielders.  If they are successful in 
"throwing out" the runners 95 percent or more of the time (fielding averages of 
.950 or better) they are doing their jobs very well. 
 
Some other statistical aspects of baseball 
 
1.   In a previous paragraph I pointed out that the average batting average has 
remained around .260.  The average standard deviation (the most frequently 
used measure of variability...see below) has decreased steadily over the years.  
It's now approximately .030.  (See Gould, 1996 and 2004, about that also.) 
 
2.  One of the most important concepts in statistics is the correlation between two 
variables such as height and weight, age and pulse rate, etc.  Instead of, or in 
addition to, "batting average against", baseball people often look at a pitcher's 
"earned run average", which is calculated by multiplying by nine the number of 
earned runs given up and dividing by the number of innings pitched.  (See 
Charles M. Schulz's  2004 book, Who's on first, Charlie Brown? , page 106, for a 
cute illustration of the concept.)   Those two variables, "batting average against" 
and "earned run average", correlate very highly with one another, not 
surprisingly, since batters who don't bat very well against a pitcher are unlikely to 
score very many runs against him. 
 
3.  The matter of "weighting" certain data is very common in statistics and 
especially common in baseball.  For example, if a player has a batting average of 
.250 against left-handed pitchers and a batting average of .350 against right-
handed pitchers, it doesn't necessarily follow that his overall batting average is 
.300 (the simple average of the two averages), since he might not have batted 
against left-handed pitchers the same number of times as he did against right-
handed pitchers.  This is particularly important in trying to understand something 
called Simpson's Paradox (see below). 
 
4.  "Unit of analysis" is a very important concept in statistics.  In baseball the unit 
of analysis is sometimes the individual player, sometimes the team, sometimes 
the league itself.  Whenever measurements of various aspects of baseball are 
taken, they should be independent of one another.  For example, if the team is 
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the unit of analysis and we find that there is a strong correlation between the 
number of runs scored and the number of hits made, the correlation between 
those same two variables might be higher and might be lower (it's usually lower) 
if the individual player is taken as the unit of analysis, and the number of 
"observations" (pieces of data) might not be independent in the latter case, since 
player is "nested" within team.  
 
5.  "Errors" arise in statistics (measurement errors, sampling errors, etc.) and, 
alas, are unfortunately also fairly common in baseball.  For example, when a ball 
is batted to a fielder and he doesn't catch it, or he catches it and then throws 
wildly to the baseman, thereby permitting the batter to reach base, that fielder is 
charged with an error, which can sometimes be an important determinant of a 
win or a loss. 
 
A "simulated" game 
 
In his 2003 book, Jim Albert displays the following tables for simulating a game of 
baseball, pitch by pitch, using a set of three dice (one red die and two white 
dice).  This approach, called [tabletop] Big League Baseball was marketed by 
Sycamore Games in the 1960s. 

 Result of rolling the red die in ñBig League Baseball."  

Red die Pitch result 

1, 6 Ball in play 

2, 3 Ball 

4, 5 Strike 

 

Result of rolling the two white dice in ñBig League Baseball."  

  Second die 

  1 2 3 4 5 6 

First die 

1 Single Out Out Out Out Error 

2 Out Double Single Out Single Out 

3 Out Single Triple Out Out Out 

4 Out Out Out Out Out Out 
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5 Out Single Out Out Out Single 

6 Error Out Out Out Single Home run 

 
 
In the first Appendix to this chapter I have inserted an Excel file that lists the 
results of over 200 throws I made of those dice in order to generate the findings 
for a hypothetical game between two teams, call them Team A and Team B.  [We 
retirees have all kinds of time on our hands to do such things, but I "cheated" a 
little by using RANDOM.ORG's virtual dice roller rather than actually throwing 
one red die and two white dice.]  Those findings will be used throughout the rest 
of this chapter to illustrate percentages, correlations, and other statistical 
concepts that are frequently encountered in real-life research.  "Big League 
Baseball" does not provide an ideal simulation, as Albert himself has 
acknowledged (e.g., it regards balls and strikes as equally likely, which they are 
not), but as I like to say, "it's close enough for government work".   
 
You might want to print out the raw data in that Appendix in order to trace where 
all of the numbers in the next several sections come from. 
 
Some technical matters regarding the simulated game: 
 

1. I previously mentioned that balls and strikes are treated as equally likely, 
although they are not.  Similarly, the probabilities associated with ñwhite 
die 1ò and ñwhite die 2ò do not quite agree with what actually happens in 
baseball, but once again theyôre close enough. 

2. You might have noticed that Batter A1 followed Batter A9 after each of the 
latterôs appearances.  B1 likewise followed B9, etc. throughout the game.  
But it is quite often the case that players are replaced during a game for 
various reasons (injury, inept play, etc.).  Once a player is replaced he is 
not permitted to re-enter the game (unlike in basketball and football). 

3. There were a couple of occasions where a batter swung at a pitch when 
he already had three straight balls.  That is unusual.  Most batters would 
prefer to not swing at that fourth pitch, hoping it might also be a ball. 

4. There was at least one occasion where a runner advanced one base 
when the following batter got a single.  Sometimes runners can advance 
more than one base in such situations. 

5. The various permutations in the second table do not allow for somewhat 
unusual events such as a batter actually getting struck by a pitch or a 
batter hitting into a ñdouble playò in which both he and a runner already on 
base are out. 

6. Most of the time a ball in play (a roll of a 1 or a 6 with the red die) resulted 
in an out, which is in fact usually the case.  We donôt know, however, how 
those outs were made.  For example, was the ball hit in the air and was 
caught by the left fielder?  Was the ball hit on the ground to the second 
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baseman who then threw the ball to the first baseman for the out?  Etc.  
As far as the score goes, it doesnôt really matter.  But it does matter to the 
players and to the ñmanagerò (every team has a manager who decides 
who is chosen to play, who bats in what order, and the like). 

7. We also donôt know who made the errors.  As far as the score goes, that 
doesnôt really matter either.  But it does matter to the individual players 
who made the errors, since it affects their fielding averages. 

8. A word needs to be said about the determination of balls and strikes.  In 
the game under consideration, if a strike was the result of a pitch thrown 
by the pitcher we donôt know if the batter swung and missed (which would 
automatically be a strike) or if he ñtookò a pitch at which he should have 
swung.  It is the ñumpireò of the game (every game has at least one 
umpire) who determines whether or not a pitch was good enough for a 
batter to hit.   

9. Although it didnôt happen in this game, sometimes the teams are tied after 
nine innings have been played.  If so, one or more innings must be played 
until one of the teams gets ahead and stays ahead.  Again, unlike in 
basketball and football, there is no time limit in baseball.   

10. If the team that bats second is ahead after 8 ½ innings there is no reason 
for them to bat in the last half of the 9th inning, since they have already 
won the game.  That also didnôt happen in this particular game, but it is 
very common. 

 
Basic Descriptive Statistics 
 
1.  Frequency distributions 
 
A frequency distribution is the most important concept in descriptive statistics.  It 
provides a count of the number of times that each of several events took place.  
For example, in the simulated data in the Appendix we can determine the 
following frequency distribution of the number of hits made by the players on 
Team A in their game against Team B: 
 
Number of hits Frequency  
 
0   3 
1   2 
2   4 
3 or more  0 
 
Do you see how I got those numbers?  Players A5, A6, and A7 had no hits; 
Players A4 and A9 had one each (A4 had a double in the seventh inning; A9 had 
a single in the second inning); and Players A1, A2, A3, and A8 had two each (A1 
had a double in the first inning and a home run in the third inning; A2 had a single 
in the third inning and a single in the seventh inning; A3 had a single in the 
seventh inning and a single in the ninth inning; and A8 had a single in the second 
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inning and a single in the seventh inning).  Check those by reading line-by-line 
for each of those players in the Appendix. 
 
2.  Measures of "central tendency" 
 
The arithmetic mean (or, simply, the mean, i.e., the traditional "average").  There 
was a total of 10 hits made by the 9 players, yielding a mean of 10/9 = 1.111 hits. 
 
The median.   Putting the number of hits in rank order we have 
0,0,0,1,1,2,2,2,and 2.  The middle number in that set of nine numbers is 1, so the 
median is 1 hit. 
  
The mode.  The most frequently occurring number of hits is 2 (there are four of 
them), so the mode is 2 hits. 
 
Others: 
 
There is something called the geometric mean.  It is calculated by finding the 
"nth" root of the product of the "n" events, where n is the total number of events  
(which are called "observations" in statistical lingo).  There is also the harmonic 
meanéthe reciprocal of the mean of the reciprocals of the n observations.  
Neither of those comes up very often, especially in baseball.  
 
The mean is usually to be preferred when the actual magnitude of each 
observation is relevant and important, especially when the frequency distribution 
is symmetric (see below).  The median is usually to be preferred when all of the 
actual magnitudes are less important and the frequency distribution is skewed.    
The mode is usually not reported because there is often more than one mode (in 
which case it can be said that there is no mode), but the case of two modes is of 
some interest.  (See Darrell Huff's delightful 1954 book, How to lie with statistics, 
for some hilarious examples where the mean, the median, or the mode is to be 
preferred; and see my article about bimodality (Knapp, 2007). 
 
3.  Measures of variability 
 
The range.  The fewest number of hits is 0, and the greatest number of hits is 2, 
so the range is 2 - 0 = 2 hits. 
 
The variance.  This will be complicated, so hang on to your ballcaps.  The 
variance is defined as the mean of the squared differences ("deviations") from 
the mean.  [How's that for a difficult sentence to parse!]  The three players who 
had no hits have a 0 - 1.111 = -1.111 difference from the mean.  The square of -
1.111 is 1.234 [trust me or work it out yourself].  Since there are three of those 
squared differences, their "contribution" to the variance is 3 x 1.234 = 3.702 
squared hits.  (More about "squared hits" in the next section.)  The two players 
who had one hit each have a 1 - 1.111 = -.111 difference, which when squared is 
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.012, and when subsequently multiplied by 2 is .024 squared hits (their 
contribution to the variance).  And the four players who had two hits each have a 
difference of 2 - 1.111 =.889, which when squared is .790 and when multiplied by 
4 is 3.160 squared hits.  Adding up all of those squared differences we have 
3.702 + .024 + 3.160 = 6.886 squared hits.  Dividing that by 9 (the number of 
players on Team A), we get a mean squared difference of .765 squared hits.  
That's the variance for these data.  Whew! 
 
The standard deviation.  As you can see, the variance comes out in the wrong 
units (squared hits), so to get back to the original units we have to "unsquare" the 
.765, i.e., take its square root, which is .875 hits.  That's the standard deviation.  
It provides an indication of the "typical" difference between a measurement and 
the mean of all of the measurements. 
 
[Would you believe that some people divide the sum of the squared deviations 
from the mean by one less than the number of observations rather than the 
number of observations, when calculating the variance and the standard 
deviation?  The reason for that is very complicated, alas, but need not concern 
us, since it has nothing to do with descriptive statistics.] 
 
The mean [absolute] deviation.  Rather than going through all of that squaring 
and unsquaring it is sometimes better to take the absolute value of each of the 
differences and find the mean of those.  Doing so here, we would have 3x 1.111 
+ 2 x .111 + 4 x .889 = 3.333 + .222 + 3.556 = 7.111, divided by 9, which is .790 
hits.  This statistic doesn't come up very often, but it should. 
 
4.  Skewness and kurtosis statistics:  There are a couple of other descriptive 
statistics that come up occasionally.  One is an indicator of the extent to which a  
frequency distribution is symmetric (balanced), and is called a measure of the 
òskewnessò of the distribution.  ("Outliers", i.e., unusual events, are a particularly 
bothersome source of skewness.)  Another descriptive statistic is an indicator of 
the extent to which a frequency distribution has most of the events ñpiled upò at a 
particular place (usually around the middle of the distribution), and is called a 
measure of the ñkurtosisò of the distribution.  The procedures for calculating such 
measures are complicated (even more so than for the variance and the standard 
deviation).  Suffice it to say that the above distribution is slightly skewed and not 
heavily concentrated in one place. 
  
5.  A measure of relationship: Pearson product-moment correlation coefficient 
 
Suppose we were interested in the question:  What is the relationship between 
the number of pitches thrown to a batter and the number of hits he gets?  The 
data for Team A are the following: 
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Player  Number of pitches (X) Number of hits (Y) 
 
A1   9    2 
A2   8    2  
A3           16    2 
A4           11    1 
A5   7    0 
A6           11    0 
A7           16    0 
A8           17    2 
A9             7    1 
 
The best way to describe and summarize such data is to construct a "scatter 
diagram", i.e., to plot Y against X.  I "asked" my favorite statistical software, 
Minitab, to do this (I have an old but very nice version.)  Here's what I got: 
 
 
Y       - 
         -         *    *                                  * 
         - 
     1.80+ 
         - 
         - 
         - 
         - 
     1.20+ 
         - 
         -    *                   * 
         - 
         - 
     0.60+ 
         - 
         - 
         - 
         - 
    -0.00+    *                   *                        *    * 
           --------+---------+---------+---------+---------+--------X        
                 8.0      10.0      12.0      14.0      16.0 
  
[Each asterisk is a data point.] 
 
 
I then asked Minitab to get the correlation between X and Y.  It replied: 
 
Correlation of X and Y = -0.223 
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Next, and last (at least for now), I asked Minitab to "regress" Y on X in order to 
get an equation for predicting Number of hits from Number of pitches.  It replied 
with this (among other things): 
 
The regression equation is 
 Y = 1.47 - 0.0513 X 
  
 s = 0.9671      R-sq = 5.0%      R-sq(adj) = 0.0% 
  
Interpretation: 
 
From the plot you can see that there is not a very strong relationship between the 
two variables X and Y.  (The points are all over the place.)  The correlation 
(specifically, the Pearson product-moment correlation coefficient) is actually 
negative (and small), indicating a slight inverse relationship, i.e., as X increased 
Y decreased and as X decreased Y increased.  The "Pearson r" is a measure of 
the degree of linear relationship between two variables (how close do the points 
come to falling on a straight line?) and ranges between -1 and +1, with the 
negative values indicative of an inverse relationship and the positive values 
indicative of a direct relationship. 
 
The R-sq of 5.0% is the square, in percentage terms, of the Pearson r.  (.223 
multiplied by itself is approximately .05.)  It suggests that about 5% of the 
variance of Y is associated with X (but not necessarily causally...see next 
paragraph).  The R-sq (adj) of 0% is an attempt to adjust the R-sq because you 
are trying to "fit" a line to only nine data points.  (If there were just two data points   
you'd have to get a perfect fit, since two points determine a line.)  For all intents 
and purposes, the fit in this case is bad. 
 
Be particularly careful about interpreting any sort of relationship as causal.  Even 
if the Pearson r had been 1.000 and the prediction of Y from X had been perfect, 
it would not necessarily follow that X caused Y, i.e., that having a certain number 
of pitches thrown to him would "make" a batter get a certain number of hits.  The 
old adage that "correlation is not causation" is true.   
 
There are lots of other measures of the relationship between two variables , e.g., 
Spearmanôs rank correlation and Goodman & Kruskalôs gamma and lambda, but 
they too come up only occasionally. 
 
Some descriptive statistics for Team B: 
 
Frequency distribution of hits: 
 Number of hits  Frequency 

0  5 
1  4 
2 or more         0 
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Players B1, B3, B4, B5, and B6 had no hits; B2 had a double in the first inning; 
B7 had a double in the seventh inning, B8 had a triple in the fourth inning, and B9 
had a single in the third inning. 
 
Their mean number of hits was 4/9 = .444. 
The standard deviation was .497 
 
So Team A had more hits (their mean was 1.111 and their standard deviation 
was .765) than Team B, which might be the reason why they won the game.  But 
is the difference in the two means ñstatistically significantò?  See the next section. 
 
No inferential statistics for these data 
 
My ñliberalò colleagues would carry out a ñt testò of the significance of the 
difference between the 1.111 for Team A and the .444 for Team B.  I wouldnôt.  
Hereôs why: 
 

1.  Although the data for the two teams constitute samples of their baseball 
prowess (assuming that they play more than one game against one another), 
there is nothing to indicate that the data we have come from random samples. 

 
2. Random sampling is a requisite for inferential statistics in general, and for 
the t test in particular. 

 
3. Because the example is a hypothetical one, the RANDOM.ORG program 
was used to generate the data, but it does not follow that every baseball 
game played by a team is a random sample of its typical performance.  [Do 
you understand that?] 

 
This is a very important matter.  All we can say is that Team A had an average 
number of hits that was greater than the average number of hits obtained by 
Team B on this particular occasion. 
 
Simpsonôs Paradox 
 
It is well known in mathematical statistics that a percentage A can be greater 
than a percentage B for one category of a dichotomy [a dichotomy is a variable 
having just two categories], a percentage C can be greater than a percentage D 
for the other category of the dichotomy, yet the ñpooled percentageò of A and C 
can be less than the ñpooled percentageò of B and D.  It all depends upon the 
numbers that contribute to the various percentages.  In an article I wrote several 
years ago (Knapp, 1985) I gave an actual example of a batter X who had a 
higher batting average than another batter Y against left-handed pitching, had a 
higher batting average against right-handed pitching also, but had an overall 
lower batting average.  [I wasnôt the first person to point that out; many others 
have done so.]  A few years later I sent a copy of that article to the Cooperstown 
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NY Baseball Hall of Fame, along with a transitive example where X >Y>Z against 
both left- and right-handed pitchers but X<Y<Z overall.  The fact that such an 
eventuality can happen (it is admittedly not very frequent) presents an interesting 
dilemma for a manager who needs to decide whether to choose X or Y to be a 
player in any given game. 
 
More on baseball and Pearsonôs r 
 
I have chosen for illustrative purposes of further uses of the Pearson Correlation  
a set of data collected a few years ago consisting of the ages, heights, weights, 
and positions (pitcher, catcher, first base, etc.) of the players on each of the 30 
Major League Baseball teams (14 in the American League and 16 in the National 
League).  This choice is not only based on (bad pun) my personal interest in the 
sport but also on people's general interest in height and weight.  The total 
number of observations is 1034, although there is one missing weight (for a 
pitcher on the Cincinnati Reds).  The data are available free of charge on the 
internet, but I have prepared Minitab, SPSS, and Excel versions that I will be 
happy to send to anyone who might be interested.  (Some of you might have 
already gotten a copy of the data.)  My personal preference is Minitab, and all of 
the analyses in what follows have been carried out by using that computer 
program (more specifically a 1986 version, with which I am perfectly satisfied). 
 
Suppose you were interested in the question:  "What is the relationship between 
height and weight?" for Major League Baseball Players.  If you have handy the 
data I will be referring to throughout this paper, there are several prior questions 
that you need to ask yourself before you do any plotting, calculating, or inferring.  
Here are ten of them.  (The questions are addressed to the reader, whether you 
are a teacher or a student.) 
 
1.   Do you care about all of the players (the entire population of 1034 players) or 
just some of them?  If all of them, you can plot and you can calculate, but there is 
no statistical inference to be made.  Whatever you might choose to calculate are 
parameters for populations, not statistics for samples. 
 
2.   If all of them, do you care about what teams they're on, what positions they 
play, or their ages;  or are you only interested in the "over-all" relationship 
between height and weight, regardless of team membership, position, or age? 
 
3.   If you do care about any of those matters, when it comes to plotting the data, 
how are you going to indicate same?  For example, since there are 30 teams, will 
you use some sorts of symbols to indicate which of the data points correspond 
with which of the teams?  How can you do that without cluttering things up?  
[Even if you don't care, trying to plot 1034 points (or 1033 points...remember that 
one weight is missing) so you can see what is going on is no easy task.  Sure, 
Minitab or SPSS or Excel will do it for you (Minitab did it for me), but the picture 
might not be very pretty.  More about that later.]        
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4.   If just some of the players, which ones?  The questions already raised are 
equally applicable to "sub-populations", where a sub-population consists of one 
of the 30 teams.  (The number of observations for each of the teams varies from 
a low of 28 to a high of 38, with most around 35.)  Sub-populations can and 
should be treated just like entire populations. 
 
5.   If you care about two of the sub-populations, say Team 10 and Team 27, how 
are you going to handle the "nesting" problem?  (Player is nested within team.)   
Are you interested in the relationship between height and weight with the data for 
the two teams "pooled" together or in that relationship within each of the teams?  
This turns out to be one of the most important considerations in correlational 
research and is also the one that is often botched in the research literature.  The 
"pooled" correlation can be vastly different from the correlation within each team.  
[Think about what would happen if you plot weight against height for a group of 
people that consists of half males and half females.]  Therefore, even if you don't 
care about the within-team correlation, you should plot the data for each team 
separately and calculate the within-team correlations separately in order to 
determine whether or not the two sets of data are "poolable". 
 
6.   If you're interested in the entire population but rather than study it in full you 
want to take a sample from the population (the usual case) and generalize from 
sample to population (the usual objective), how do you do the sampling?  
Randomly?  (Ideally.).  What size sample, and why?  With or without 
replacement?  If with replacement, what will you do if you sample the same 
person more than once (unlikely, but possible)? 
 
7.   Suppose you choose to draw a simple random sample of size 30 without 
replacement.  How will you do that?  Use a table of random numbers found in the 
back of a statistics textbook?  (The players are numbered from 1 to 1034, with 
the American League players listed first.)  Use the random-sampling routine that 
is included in your favorite statistical "package" ?  (All three of Minitab, SPSS, 
and Excel have them, and they are of varying degrees of user-friendliness.)   Or 
use one of those that are available on the internet, free of charge?   (There is a 
nice one at the random.org website.) 
 
8.   Do you expect the random sample of size 30 to consist of one player from 
each of the 30 teams?  If so, you're dreaming.  (It's possible but extremely 
unlikely.)  Under what circumstances, if any, would you feel unsatisfied with the 
sample you draw and decide to draw a different one?  (Please don't do that.) 
 
9.   Suppose you choose to draw a "stratified" random sample rather than a 
simple one.  What variable (team, position, age) would you stratify on?  Why?  If 
age (a continuous variable carried out to two decimal places!), how would you do 
the stratification?  How do you propose to "put the pieces (the sub-samples) back 
together again" for analysis purposes? 
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10.  Whether you stratify or not, will you be comfortable with the routines that 
you'll use to plot the data, calculate the Pearson r, and carry out the inference 
from sample to population?  Do you favor significance tests or confidence 
intervals?  (Do you know how the two are related?) 
 
Plotting 
 
Let's consider, in turn, three of the examples alluded to above:  
 
1.  Entire population 
2.  Two sub-populations (Team 10 and Team 27) 
3.  Simple random sample from entire population 
 
I asked Minitab to plot weight (Y) against height (X) for all 1034 players.  Here it 
is:   [ N* = 1 indicates that one point is missing; the symbols in the heart of the 
plot indicate how many points are in the various regions of the X,Y space...the * 
indicates a single point and the + indicates more than 9]: 
 
 
  
         - 
      300+ 
         -                                          * 
 weight  -                             *      * 
         -                             * 
         -                   *            2   *            *      * 
      250+                *     *   2  4  4   5  *  *   *     * 
         -                   *  2   4  6  +   6  4  2   3 
         -            *   *  3  6   +  +  +   8  7  *      *  * 
         -         *  *   5  +  +   +  +  +   +  5  *   * 
         -      *  *  3   6  +  +   +  +  +   8  6  4 
      200+      *  *  6   +  +  +   +  +  +   +  3  * 
         -         2  +   +  +  +   +  +  +   5  *  3 
         -  *   *  8  +   +  +  +   +  7  * 
         -  *   *  4  8   8  +  6   8  2  4   * 
         -      2  2  4   3  3  4   2  * 
      150+      *         *  2 
         - 
         - 
           --------+---------+---------+---------+---------+-----height   
                69.0      72.0      75.0      78.0      81.0 
  
         N* = 1 
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Notice the very-close-to-elliptical shape of the plot.  Does that suggest to you that 
the relationship is linear but not terribly strong?  [It does to me.]  That's nice, 
because Pearson r is a measure of the direction and the magnitude of linear 
relationship between two variables.  The famous British statistician Karl Pearson 
invented it over 100 years ago.  It can take on any values between -1 and +1, 
where -1 is indicative of a perfect inverse (negative) linear relationship and +1 is 
indicative of a perfect direct (positive) linear relationship.  Notice also how difficult 
it would be to label each of the data points according to team membership.  The 
plot is already jam-packed with indicators of how many points there are in the 
various regions. 
 
Take a guess as to the value of the corresponding Pearson r. We'll come back to 
that in the "Calculating" section (below). 
 
I then asked Minitab to make three weight-vs.-height plots for me, one for Team     
10, one for Team 27, and one for the two teams pooled together.  Here they are: 
 
First, Team 10 (number of players = 33): 
 
weight  - 
         -                                                         * 
         - 
      225+ 
         -                              2      * 
         -                 *      *                   * 
         - 
         -    *                   *     *      * 
      200+                 *      5            *                   * 
         - 
         -    *     *                   2      2 
         -                        *                   * 
         -                        *            2 
      175+                 * 
         -                 * 
         - 
         -                        * 
         - 
      150+ 
           ------+---------+---------+---------+---------+------+height   
              70.5      72.0      73.5      75.0      76.5      78.0 
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Second, Team 27 (number of players = 36): 
 
weight  - 
         -                           *                           * 
         - 
      245+                       * 
         -                       * 
         -                       *   * 
         -                       * 
         -                       2 
      210+                       2   *   * 
         -           2   *           *   * 
         -           *   * 
         -               2   *       * 
         -               2   3 
      175+               * 
         -   *   *   *           * 
         -   * 
         - 
         -       * 
      140+ 
           --+---------+---------+---------+---------+---------+-height   
          70.0      72.5      75.0      77.5      80.0      82.5 
 
Third, both teams pooled together (number of players = 69): 
weight  - 
         -                           *                           * 
         - 
      245+                       * 
         -                       *           * 
         -                       *   * 
         -                       * 
         -           *   *   2   3   * 
      210+                       2   *   * 
         -   *       3   7   *   2   *   *   * 
         -           *   * 
         -   *   *       2   3   2   2 
         -               4   3   2 
      175+           *   * 
         -   *   *   2           * 
         -   *           * 
         - 
         -       * 
      140+ 
           --+---------+---------+---------+---------+---------+-height   
          70.0      72.5      75.0      77.5      80.0      82.5 
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There are several things to notice regarding those three plots.  [I'll bet you've 
"eye-balled" some of the features already.]   The first thing that caught my eye 
was the difference in the plots for the two teams taken separately.  The Team 10 
plot, although reasonably linear, is rather "fat".  The Team 27 plot is very strange-
looking, does not appear to be linear, and has that extreme "outlier" with height 
over 82.5 inches and weight over 245 pounds. (He's actually 83 inches tall and 
weighs 260 pounds...a very big guy.)  The third plot, for the pooled data, looks 
more linear but is dominated by that outlier. 
 
Once again, try to guess what the three correlations will be, before carrying out 
the actual calculations (see the following section).  What do you think should be 
done with the outlier?  Delete it?  Why or why not?  Are the data for the two 
teams poolable, and having combined them is OK?  Why or why not? 
 
Lastly, I asked Minitab to draw a simple random sample of 30 players from the 
entire population of 1034 players, and to plot their weights against their heights.  
[The Minitab command is simply "sample 30 C1 C2", where C1 is the column 
containing a list of all 1034 ID numbers and C2 is where I wanted to put the ID 
numbers of the 30 sampled players.  How would you (did you) do it?] 
 
Here's the plot: 
 
         -                             * 
 weight  - 
         -                                    * 
         - 
      250+ 
         - 
         -                                    *                   * 
         -                      *             *     * 
         -                      *                   * 
      225+                             * 
         -                      *      *                   * 
         -         *      *     *             * 
         -                * 
         -         2            * 
      200+  *      *      *            * 
         -                      * 
         -                             *                          * 
         - 
         -         2 
           --------+---------+---------+---------+---------+-----height   
                72.0      73.5      75.0      76.5      78.0 
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What do you think about that plot?  Is it "linear enough"?  (See the section on 
testing linearity and normality, below.)   Guess what the Pearson r is.  If you used 
your software to draw a simple random sample of the same size, does your plot 
look like mine? 
 
Calculating 
 
I asked Minitab to calculate all five Pearson r's for the above examples (one for 
the entire population; three for teams 10 and 27; and one for the random 
sample).  Here are the results: 
 
Entire population:  r = .532.  I'd call that a moderate, positive relationship.  
 
Team 10:  r = .280.  Low, positive relationship? 
 
Team 27:  r = .723  (including the outlier).  Strong, positive relationship, but 
partially attributable to the outlier.  The correlation is .667 without the outlier. 
 
Two teams combined:  r = .587 (including the outlier).  Moderate, positive, even 
with the outlier.  The correlation is .510 without the outlier.  Pooling was 
questionable, but turned out to be not as bad as I thought it would be. 
Random sample:  r = .439.  Low-to-moderate, positive relationship.  It's an under-
estimate of the correlation for the entire population.  It could just as easily have 
been an over-estimate.   That's what chance is all about 
 
Inferring 
 
As I indicated earlier in this chapter, for the entire-population example and for the 
two-team sub-population example, there is no statistical inference to be made.  
The correlation is what it is.  But for the random-sample example you might want 
to carry out one or more statistical inferences from the sample data that you 
know and have, to the population data that you (in real life) would not know and 
wish you had.  Let's see what the various possibilities are. 
 
First, point estimation.  If someone put a gun to your head and demanded that 
you give one number that is your best guess for the correlation between height 
and weight in the population of 1034 baseball players, what would you say?  
After plotting my random sample data and calculating the corresponding Pearson 
r for that sample, I'd say .439, i.e., the sample correlation itself.  I would not be 
very comfortable in so doing, however, for three reasons: (1) my sample of 30 is 
pretty small; (2) I probably should make a "finite population correction", because 
the population is not of infinite size and the sample takes a  bite (albeit small) out 
of that population;  and (3) I happen to know (and you probably don't) from the 
mathematical statistics literature that the sample correlation is not necessarily 
"the best" single estimate of the population correlation.  [It all has to do with 
unbiased estimation, maximum  likelihood estimation, Bayesian inference, and 
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other such esoteric matters, so let's not worry about it, since we can see that 
point estimation is risky business.] 
 
Second, interval estimation.   Rather than provide one number that is our best 
single guess, how about a range of numbers that might "capture" the population 
correlation?  [We could always proclaim that the population correlation is 
between -1 and +1, but that's the entire range of numbers that any Pearson r can 
take on, so that would not be very informative.]  It turns out that interval 
estimation, via so-called confidence intervals, is the usually preferred approach 
to statistical inference.  Here's how it works. 
 
You must first decide how confident you would like to be when you make your 
inference.  This is always "researcher's choice", but is conventionally taken to be 
95% or 99%, with the former percentage the more common.  (The only way you 
can be 100% confident is to estimate that the correlation is between -1 and +1, 
but as already indicated that doesn't narrow things down at all.)  
 
Next you must determine the amount of sampling error that is associated with a 
Pearson r when drawing a simple random sample of a certain size from a 
population.  There are all sorts of formulas for the sampling error, but if you can 
assume that there is a normal bivariate (elliptical) distribution of X and Y in the 
population from which the sample has been drawn [more about this later], and 
you want your computer to do the work for you, all you need to do is tell your 
software program what your sample correlation and your sample size are and it 
will give you the confidence interval automatically.  My favorite source is Richard 
Lowry's VassarStats website.  I gave his interval estimation routine 95% 
confidence, my .439 correlation, and my "n" of 30,  and it returned the numbers 
.094 and .690.  I can therefore be approximately 95% confident that the interval 
from .094 to .690 captures the population correlation.  Since I have the full 
population data (but wouldn't in real life) I see that my interval does capture the 
population correlation (of .532).  But it might not have.  All I now know is that in 
the long run 95% of intervals constructed in this way will do so and 5% will not. 
 
Third, there is hypothesis testing, which (alas) is the most common type of 
statistical inference.  On the basis of theory and/or previous research I could 
hypothesize (guess) that the correlation between height and weight in the 
population is some number, call it ɟ (the Greek rho), which is the population 
counterpart to the sample Roman letter r.  Suppose I claim that there is 
absolutely no (zero) linear relationship between the heights and the weights of 
Major League baseball players, because I theorize that there should be just as 
many short and heavy players, and tall and light players, as there are short and 
light and tall and heavy ones.  I would therefore like to test the hypothesis that ɟ 
is equal to zero (the so-called "null" hypothesis).  Or, suppose that Smith and 
Jones had carried out a study of the heights and the weights of adults in general 
and found that the Pearson correlation between height and weight was .650.  I 
might claim that the relationship should be the same for baseball players as it is 
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for adults in general, so I would like to test the hypothesis that ɟ is equal to .650.  
Let's see how both tests would work: 
 
Hypothesis 1:  ɟ = 0, given that r = .439 for n =30   
 
The test depends upon the probability that I would get a sample r of .439 or more 
when the population ɟ = 0.  If the probability is high, I can't reject Hypothesis 1; if 
it's low (say, .05 or thereabouts...the usual conventional choice), I can.  Just as in 
the interval estimation approach (see above) I need to know what the sampling 
error is in order to determine that probability.  Once again there are all sorts of 
formulas and associated tables for calculating the sampling error and, 
subsequently, the desired  probability, but fortunately we can rely on Richard 
Lowry and others who have done the necessary work for us.  I gave Lowry's  
software my r and my n, and a probability (p) of .014 was returned.  Since that 
probability is less than .05 I can reject the hypothesis that ɟ = 0.  (I might be 
wrong, however.  If so, I'm said to have made what the statisticians call a Type I 
Error: rejecting a true hypothesis.) 
 
[Important aside: There is an interesting connection between interval estimation 
and hypothesis testing that is especially relevant for Pearson r's.  If you 
determine the 95% confidence interval for ɟ and that interval does not include 0, 
then you are justified in rejecting the hypothesis that  ɟ = 0.  For the example just 
completed, the 95% confidence interval around .439 was found to go from .094 
to .690, and that interval does not include 0, so once again I can reject 
Hypothesis 1, indirectly.  (I can also reject any other values that are not in that 
interval.)   The .439 is said to be "significant at the 5% level" (5% is the 
complement of 95% and I got a "p-value" less than .05.] 
 
Hypothesis 2:  ɟ =..650, given that r = .439 for n =30 
 
The logic here is similar.  If the probability is high of getting a sample r of .439 (or 
anything more discrepant) when the population ɟ = .650, I can't  reject 
Hypothesis 2; if the probability is low, I can.  But the mathematics gets a little 
heavier here, so I will appeal to the preceding "Important aside" section and 
claim that I cannot reject Hypothesis 2 because .650 is within my 95% 
confidence interval.  (I might be wrong again, for the opposite reason, and would 
be said to have made a Type II Error: Not rejecting a false hypothesis.) 
 
Since I know that ɟ is .532...but wouldn't know that in real life (I can't stress that 
too often), I "should have" rejected both Hypothesis 1 and Hypothesis 2. 
 
Rank correlations and non-parametric inference 
 
In the Inferring section (see above) I said that certain things (e.g., the use of 
Richard Lowry's routine for determining confidence intervals) follow if you can 
assume that the bivariate distribution of X and Y in the population is normal.  
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What if you know it isn't or you are unwilling to assume that it is?  In that case 
you can rank-order the X's, rank-order the corresponding Y's, and get the 
correlation between the ranks rather than the actual measures.  There are 
several kinds of rank correlations, but the most common one is the Spearman 
rank correlation, call it rS  (pronounced "r-sub-S"), where the S stands for Charles 
Spearman, the British psychologist who derived it.  It turns out that Spearman's rS 
is identical to Pearson's r for the ranked data. 
 
Consider as an example the height (X) and weight (Y) data for Team 27.   Here  
are the actual heights, the actual weights, the ranks for the heights, and the 
ranks for the weights (if two or more people have the same height or the same 
weight, they are assigned the mean of the ranks for which they are tied): 
 

    ID   X      Y    Xrank  Yrank 
  
    1    73    196   12.0   17.0 
    2    73    180   12.0     9.0 
    3    76    230   31.0   31.5 
    4    75    224   24.0   30.0 
    5    70    160     1.5     2.0 
    6    73    178   12.0     7.0 
    7    72    205     6.5   22.5 
    8    73    185   12.0   11.5 
    9    75    210   24.0   26.0 
   10   74    180   17.5     9.0 
   11   73    190   12.0   15.0 
   12   73    200   12.0   19.5 
   13   76    257   31.0   35.0 
   14   73    190   12.0   15.0 
   15   75    220   24.0   29.0 
   16   70    165     1.5     3.0 
   17   77    205   34.5   22.5 
   18   72    200     6.5   19.5 
   19   77    208   34.5   24.0 
   20   74    185   17.5   11.5 
   21   75    215   24.0   28.0 
   22   75    170   24.0     5.0 
   23   75    235   24.0   33.0 
   24   75    210   24.0   26.0 
   25   72    170     6.5     5.0 
   26   74    180   17.5     9.0 
   27   71    170     3.5     5.0 
   28   76    190   31.0   15.0 
   29   71    150     3.5     1.0 
   30   75    230   24.0   31.5 
   31   76    203   31.0   21.0 
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   32   83    260   36.0   36.0 [the "outlier"] 
   33   75    246   24.0   34.0 
   34   74    186   17.5   13.0 
   35   76    210   31.0   26.0 
   36   72    198     6.5   18.0 
  
  
As indicated above, the Pearson r for the actual heights and weights is .723.  The 
Pearson r for the ranked heights and weights (the Spearman rS ) is .707.  [Thank 
you, Minitab, for doing the ranking and the correlating for me.] 
 
Had this been a random sample (which it is not...it is a sub-population) you might 
have wanted to make a statistical inference from the sample to the population 
from which the sample had been randomly drawn.  The procedures for so doing 
are similar to the procedures for ordinary Pearson r and are referred to as "non-
parametric".  The word "non-parametric" derives from the root word "parameter" 
that always refers to a population.  If you cannot assume that there is a normal 
bivariate distribution of X and Y in the population whose principal parameter is 
the population correlation, "non-parametric" inference is called for. 
 
Testing for linearity and normality 
 
If you're really compulsive and can't judge the linearity and normality of the 
relationship between X and Y by visual inspection of the X,Y plot, you might want 
to carry out formal tests for both.  Such tests are available in the literature, but it 
would take us too far afield to go into them.  And if your data "fails" either or both 
of the tests, there are data transformations that make the relationship "more 
linear" or "more normal".   
 
Regression 
 
Closely related to the Pearson correlation between two variables is the 
regression of one of the variables on the other, for predictive purposes.  Some 
people can't say "correlation" without saying "regression".  [Some of those same 
people can't say "reliability" without saying "validity".]  In this section I want to 
point out the connection between correlation and regression, using as an 
example the data for my simple random sample of 30 players drawn from the 
entire population of 1034 players. 
 
Suppose that you were interested not only in estimating the direction and the 
degree of linear relationship between their heights (X) and their weights (Y), but 
were also interested in using their data to predict weight from height for other 
players.  You would start out just like we already have, namely plotting the data, 
calculating the Pearson r, and making a statistical inference, in the form of an 
estimation or a hypothesis test, from the sample r to the population ɟ.  But then 
the focus switches to the determination of the line that "best fits" the sample plot.  
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This line is called the Y-on-X regression line, with Y as the dependent variable 
(the predictand) and X as the independent variable (the predictor).  [There is also 
the X-on-Y regression line, but we're not interested in predicting height from 
weight.]  The reason for the word "regression" will be explained soon. 
 
I gave Minitab the command "regr c4 1 c3", asking for a regression analysis   
with the data for the dependent variable (Y) in column 4 and with the 
corresponding data for the one independent variable (X) in column 3.  Here is 
what it (Minitab) gave me: 
 
The regression equation is 
 weight = - 111 + 4.39 height 
  
 Predictor       Coef         Stdev     t-ratio 
 Constant      -111.2       126.5       -0.88 
 height            4.393       1.698        2.59 
  
 s = 19.61       R-sq = 19.3%     R-sq(adj) = 16.4% 
  
 Analysis of Variance 
  
 SOURCE       DF             SS             MS 
 Regression      1           2576.6       2576.6 
 Error              28            10772.1         384.7 
 Total              29                13348.7 
  
 Unusual Observations 
 Obs.  height    weight       Fit   Stdev.Fit  Residual   St.Resid 
   6     79.0    190.00     235.87      8.44    -45.87       -2.59R  
  27    75.0    270.00     218.30      3.68     51.70        2.68R  
 
 
Let's take that output one piece at a time. 
  
The first and most important finding is the equation of the best-fitting regression 
line.  It is of the form Y' = a + bX, where a is the Y intercept and b is the slope.  
[You might remember that from high school algebra.  Y' is the "fitted Y", not the 
actual Y.]  If you want to predict a player's weight from his height, just plug in his 
height in inches and you'll get his predicted weight in pounds.  For example, 
consider a player who is 6 feet 2 inches (= 74 inches) tall.  His predicted weight is 
-111 + 4.39 (74) = 214 pounds.  Do you know that will be his exact weight?  Of 
course not; it is merely approximately equal to the average of the weights for the 
six players in the sample who are approximately 74 inches tall.  (See the plot, 
above.)  But it is a heck of a lot better than not knowing his height.  
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The next section of the output provides some clarifying information (e.g., that the 
intercept is actually -111.2 and the slope is 4.393) and the first collection of 
inferential statistics.  The intercept is not statistically significantly different from 
zero (trust me that a t-ratio of -0.88 produces a p-value greater than .05), but the 
slope is (big t, small p; trust me again).  The intermediate column (Stdev) is the 
so-called "standard error" for the intercept and the slope, respectively.  When 
combined with the coefficient itself, it produces the t-ratio, which in turn produces 
the [unindicated, but less than .05] p-value.  Got that? 
 
The third section provides a different kind of standard error (see below)...the s of 
19.61; the squared correlation in percentage form (check that .193 is the square 
of .439); and the "adjusted" squared correlation of 16.4%.  The squared 
correlation needs to be adjusted because you are trying to fit a regression line for 
two variables and only 30 points.  [Think what would happen if you had just  two 
points.  Two points determine a straight line, so the line would fit perfectly but 
unsatisfactorily.]  The square root of the adjusted squared correlation, which is 
equal to .405, might very well provide "the best" point estimate of the population 
correlation (see above). 
 
The "Analysis of variance" section re-inforces (actually duplicates) the 
information in the previous two sections and would take us too far afield with 
unnecessary jargon, so let's ignore that for the time being.  [Notice, however, that 
if you divide the MS for Regression by the MS for Error, you get the square of the 
t-ratio for the slope.  That is not accidental.  What is accidental is the similarity of 
the correlation of .439 to the slope of 4.393.  The slope is equal to the correlation 
multiplied by the ratio of the standard deviation of Y to the standard deviation of 
X (neither is indicated, but trust me!), which just happens to be about 10.] 
 
The last section is very interesting.  Minitab has identified two points that are 
pretty far off the best-fitting regression line, one above the line (Obs. 27) and one 
below the line (Obs. 6), if you think they should be deleted.  [I don't.] 
 
Going back to predicting weight from height for a player who is 74 inches tall:  
The predicted weight was 214 pounds, but that prediction is not perfect.  How 
good is it?  If you take the 214 pounds and lay off the standard error (the second 
one) of 19.61 a couple of times on the high side and a couple of times on the low 
side you get a 95% confidence interval (yes, a different one) that ranges from 
214 - 2(19.61) to 214 + 2(19.61), i.e., from 175 pounds to 253 pounds.  That 
doesn't narrow things down very much (the range of weights in the entire 
population is from 150 pounds to 290 pounds), but the prediction has been based 
on a very small sample. 
 
Why the term "regression"?  The prediction just carried out illustrates the reason. 
That player's height of 74 inches is below the mean for all 30 players (you can 
see that from the plot).  His predicted weight of 214 pounds is also below the 
mean weight (you can see that also), but it is closer to the mean weight than his 
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height is to the mean height (how's that for a mouthful?), so his predicted weight 
is "regressed" toward the mean weight.  The matter of "regression to the mean" 
comes up a lot in research in general.  For example, in using a pre-experimental 
design involving a single group of people (no control group) measured twice, 
once before and once after the intervention, if that group's performance on the 
pretest is very low compared to the mean of a larger group of which it is apart, its 
performance on the posttest will usually be closer to the posttest mean than it 
was to the pretest mean.  [It essentially has nowhere to go but up, and that is 
likely to be mis-interpreted as a treatment effect, whereas it is almost entirely 
attributable to the shape of the plot, which is a function of the less-than-perfect 
correlation between pretest and posttest.  Think about it!] 
 
Sample size 
 
For my random-sample example I chose to take a sample of 30 players.  Why 
30?  Why  indeed?  What size sample should I have I taken?   Believe it or not, 
sample size is arguably the most important consideration in all of inferential 
statistics (but you wouldn't know it from actual practice, where many researchers 
decide on sample sizes willy-nilly and often not random sample sizes at that.) 
 
Briefly put, the appropriate sample size depends upon how far wrong you're 
willing to be when you make a statistical inference from a sample to the 
population from which the sample has been drawn.  If you can afford to be wrong 
by a lot, a small sample will suffice.  If you insist on never being wrong you must 
sample the entire population.  The problem becomes one of determining what 
size sample is tolerably small but not so small that you might not learn very much 
from it, yet not so large that it might approximate the size of the entire population.  
[Think of the appropriate sample size as a "Goldilocks" sample size.]  So, what 
should you do? 
 
It depends upon whether you want to use interval estimation or hypothesis 
testing.  For interval estimation there are formulas and tables available for 
determining the appropriate sample size for a given tolerable width for the 
confidence interval.  For hypothesis testing there are similar formulas and tables 
for determining the appropriate sample size for tolerable probabilities of making 
Type I Errors and Type II Errors.  You can look them up, as Casey Stengel used 
to say.  [If you don't know who Casey Stengel is, you can look that up also!] 
   
Multiple regression 
 
I haven't said very much about age.  The correlation between height and weight 
for the entire population is .532.  Could that correlation be improved if we took 
into account the players' ages?  (It really can't be worse even if age doesn't 
correlate very highly with weight; its actual correlation with weight for these data 
is only .158, and its correlation with height is -.074...a negative, though even 
smaller, correlation.)  I went back to the full data and gave Minitab the command 
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"regr c4 2 c3 c5", where the weights are in Column 4, the heights are in Column 
3, and the ages are in Column 5.  Here is what it returned (in part): 
 
The regression equation is 
 weight = - 193 + 0.965 age + 4.97 height 
  
 1033 cases used 1 cases contain missing values 
  
 Predictor         Coef         Stdev       t-ratio 
 Constant     -192.66         17.89      -10.77 
 age                .9647         .1249          7.72 
 height           4.9746         .2341       21.25 
  
 s = 17.30       R-sq = 32.2%     R-sq(adj) = 32.1% 
  
We can ignore everything but the regression equation (which, for those of you 
who are mathematically inclined, is the equation of a plane, not a line), the s, and 
the R-sq, because we have full-population data.  Taking the square root of the R-
sq of .322 we get an R of .567, which is higher than the r of .532 that we got for 
height alone, but not much higher.  [It turns out that R is the Pearson r correlation 
between Y and Y'.  Nice, huh?]  We can also use the new regression equation to 
predict weight from height and age, with a slightly smaller standard error of 
17.30, but let's not.  I think you get the idea. 
 
The reason it's called multiple regression is because there is more than one 
independent variable. 
 
Summary 
 
That's about it (for now). I've tried to point out some important statistical concepts 
that can be squeezed out of the baseball data.  Please let me know (my e-mail 
address is tknapp5@juno.com) if you think of others.  And by all means (another 
bad pun) please feel free to ask me any questions about this "module" and/or tell 
me about all of the things I said that are wrong. 
 
Oh, one more thing:  It occurred to me that I never told you how to calculate a 
Pearson r.  In this modern technological age most of us just feed the data into 
our friendly computer program and ask it to do the calculations.  But it's possible 
that you could find yourself on a desert island some time without your computer 
and have a desire to calculate a Pearson r.  The second appendix that follows 
should help.  (And you might learn a few other things in the process.) 
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Appendix 1:  The raw data for the game of Team A vs. Team B 
 
      Pitch        
      red white#1 white#2 Result   
 
First inning 
 
Team A      
A1  1 2 2       Double; A1 reaches second base  
A2     6 4 2       A2 is out; A1 still on second           
A3  4    Strike 1  
  4    Strike 2  
  3    Ball 1  
  2    Ball 2  
  6 4 6  A3 is out; A1 still on second  
A4  3    Ball 1  

1 1 4  A4 is out; end of first half 
    of first inning   

 
Team B      
B1  1 3 5  B1 is out.  
B2  6 2 2  Double; B2 reaches second base  
B3  3    Ball one  
  3    Ball two  
  2    Ball three  
  1 5 5  B3 is out; B2 still on second  
B4  4    Strike one  
  2    Ball one  
  5    Strike two  
  1 6 1  B4 reaches first base on error; 

B2 advances to third base  
B5  2    Ball one  
  6 1 2  B5 is out; end of first inning; 

no score 
 
Second inning 
 
Team A      
A5  3    Ball one  
  2    Ball two  
  3    Ball three  
  3    Ball four; A5 awarded first base 

(That's called a "walk".)   
A6  2    Ball one  
  2    Ball two  
  1 2 1  A6 is out; A5 is still on first  
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A7  5    Strike one  
  5    Strike two  
  6 3 1  A7 is out; A5 is still on first  
A8  5    Strike one  
  5    Strike two  
  3    Ball one  
  6 6 5  Single; A8 reaches first base; 

A5 advances to second base  
A9  1 5 2  Single; A9 reaches first base; 

A8 advances to second, A5 to third  
A1  5    Strike one  
  4    Strike two  
  1 6 3  A1 is out; end of first half of 

second inning; no score  
 
Team B      
B6  3    Ball one  
  6 2 6  B6 is out  
B7  2    Ball one  
  3    Ball two  
  3    Ball three  
  6 4 1  B7 is out  
B8  1 1 4  B8 is out; end of second inning; 

still no score  
 
 
Third inning 
 
Team A      
A2  1 6 4  A2 is out  
A3  3    Ball one  
  3    Ball two  
  5    Strike one  
  2    Ball three  
  4    Strike 2  
  3    Ball four; A3"walks"  
A4  4    Strike 1 
  4    Strike two 
  1 5 5  A4 is out; runner A3 is still on 

first base 
A5  1 3 1  A5 is out; end of first half of 

third inning; still no score 
 
Team B     
B9  1 5 6  Single; B9 reaches first base 
B1  4    Strike 1 
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  6 3 4  B1 is out; B9 is still on first 
B2  2    Ball one 
  6 4 3  B2 is out; B9 is still on first  
B3  3    Ball one 
  5    Strike one 
  3    Ball two 
  3    Ball three 
  6 6 3  B3 is out; end of third inning; 
      still no score 
 
Fourth inning 
 
Team A     
A6  5    Strike one 
  2    Ball one 
  2    Ball two 
  6 3 5  A6 is out 
A7  2    Ball one 
  3    Ball two 
  4    Strike one 
  3    Ball three 
  2    Ball four; A7 "walks" 
A8  4    Strike one 
  1 4 1  A8 is out; A7 is still on first 
A9  4    Strike one 
  5    Strike two 
  6 5 5  A9 is out; end of first half of 

fourth inning; still no score 
 
Team B     
B4  4    Strike one 
  3    Ball one 
  1 5 3  B4 is out 
B5  5    Strike one 
  5    Strike two 
  5    Strike three; B5 is out 
B6  3    Ball one 
  2    Ball two 
  2    Ball three 
  3    Ball four; B6 "walks" 
B7  5    Strike one 
  2    Ball one 
  6 6 1  B7 reaches first base on error; 

B6 advances to second base 
B8  4    Strike one 
  2    Ball one 
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  3    Ball two 
  6 3 3  Triple; B8 reaches third base; 

B6 and B7 score; Team B leads 2-0 
B9  4    Strike one 
  4    Strike two 
  5    Strike three; B9 is out; end of 
      fourth inning; Team B leads 2-0 
 
Fifth inning 
 
Team A     
A9  3    Ball one 
  4    Strike one 
  1 4 4  A9 is out 
A1  1 6 6  Home run; Team B now leads 2-1 
A2  6 5 6  Single; A2 reaches first base 
A3  2    Ball one 
  4    Strike one 
  6 3 1  A3 is out; A2 is still on first  
A4  1 2 6  A4 is out; end of first half of 

fifth inning; Team B still leads  
2-1 
 

Team B     
B1  4    Strike one 
  1 1 2  B1 is out 
B2  1 4 1  B2 is out 
B3  3    Ball one 
  5    Strike one 
 6 2 1  B3 is out; end of fifth inning; 

Team B still leads 2-1 
 
Sixth inning 
 
Team A     
A5  1 1 3  A5 is out 
A6  5    Strike one 
  6 2 1  A6 is out 
A7  3    Ball one 
  2    Ball two 
  4    Strike one 
  2    Ball three 
  1 1 2  A7 is out; end of first half of 

sixth inning; Team B still leads 
2-1 
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Team B     
B4  1 1 5  B4 is out 
B5  4    Strike one 
  2    Ball one 
  1 4 5  B5 is out 
B6  6 3 5  B6 is out; end of sixth inning; 

Team B still leads 2-1 
 
Seventh inning 
 
Team A     
A8  3    Ball one 
  4    Strike one 
  2    Ball two 
  6 2 3  Single; A8 reaches first base 
A9  1 1 2  A9 is out; A8 is still on first  
A1  4    Strike one 
  4    Strike two 
  1 6 2  A1 is out; A8 is still on first  
A2  1 5 2  Single; A2 reaches first base; 

A8 advances to second base 
A3  1 5 6  Single; A3 reaches first base;  

A2 advances to second base, A8 to third 
base 

A4  5    Strike one 
  3    Ball one 
  1 2 2  Double; A4 reaches second base; 

A3 advances to third base; A8 and A2 
score; Team A now leads 3-2 

A5  1 3 6  A5 is out; end of first half of 
seventh inning; Team A still leads 

      3-2 
 
Team B 
B7  6 2 2  Double; B7 reaches second base 
B8  6 4 2  B8 is out; B7 remains on second 
B9  1 1 2  B9 is out; B7 remains on second  
B1  4    Strike one 
  5    Strike two 
  3    Ball one 
  4    Strike three; B1 is out; end of 

seventh inning; Team A still leads 3-2 
 
Eighth inning 
 
Team A     
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A6  4    Strike one 
  1 4 4  A6 is out 
A7  4    Strike one 
  2    Ball one 
  6 5 5  A7 is out 
A8  2    Ball one 
  4    Strike one 
  4    Strike two 
  6 4 6  Batter is out; end of first half of 

eighth inning; Team A still leads 3-2 
 
Team B     
B2  6 6 1  Error; B2 reaches first base 
B3  5    Strike one 
  1 1 5  B3 is out; B2 remains on first  
B4  6 6 3  B4 is out; B2 remains on first  
B5  1 4 1  B5 is out; end of eighth inning; 

Team A still leads 3-2 
 
Ninth inning 
 
Team A     
A9  5    Strike one 
  1 1 6  Error; A9 reaches first base 
A1  1 5 3  A1 is out; A9 remains on first  
A2  5    Strike one 
  5    Strike two 
  3    Ball one 
  4    Strike three; A2 is out; A9 remains 

on first  
A3  1 3 2  Single; A3 reaches first base; 

A9 advances to second base 
A4  4    Strike one 
  6 4 5  A4 is out; end of first half of 

ninth inning; Team A still leads 
3-2 

 
Team B     
B6  4    Strike one 
  3    Ball one 
  3    Ball two 
  5    Strike two 
  5    Strike three; B6 is out 
B7  3    Ball one 
  2    Ball two 
  4    Strike one 



 225 

  4    Strike two 
  2    Ball three 
  5    Strike three; B7 is out 
B8  6 3 4  B8 is out; end of game; Team A wins 

3-2 
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Appendix 2:  [My thanks to Joe Rodgers for the great article he co-authored with 
Alan Nicewander, entitled "Thirteen ways to look at the correlation coefficient", 
and published in The American Statistician, 1988, volume 42, number 1, pages 
59-66.  I have included some of those ways in this appendix.] 
 
Here are several mathematically equivalent formulas for the Pearson r (actually 
ɟ, since these formulas are for population data): 
 
1.   ɟ =  × zX zY 

            --------- 
       n 
 
This is the best way to "think about" Pearson r.  It is the average (mean) product 
of standardized variable X and standardized variable Y.  A standardized variable 
z , e.g., zX , is equal to the raw variable minus the mean of the variable, divided 
by the standard deviation of the variable, i.e., zX = (X - MX)/sX.  This formula for r 
also reflects the product-moment feature (the product is of the z's; a moment is a 
mean).  Since X and Y are usually not on the same scale, what we care about is 
the relative relationship between X and Y, not the absolute relationship.  It is not 
a very computationally efficient way of calculating r, however, since it involves all 
of those intermediate calculations that can lead to round-off errors. 
 
2.  ɟ = 1 - 1/2 [s2  of  (zY - zX )] 
 
This a variation of the previous formula, involving the difference between  
"scores" on the standardized variables rather than their product.  If there are 
small differences, the variance of those differences is small and the r is close to 
+1.  If the differences are large (with many even being of opposite sign), the 
variance is large and the r is close to -1.  
 
3.  ɟ =  n×XY - (×X)(×Y) 
 ------------------------------------------ 
 ã [n×X2 - (×X)2 ] [n×Y2 - (×Y)2 ] 
 
(N.B.: the square root is taken of the product of the bracketed terms in the 
denominator) 
 
This formula looks much more complicated (and it is, in a way), but involves only 
the number of observations, the actual X and Y data, and their squares.  In "the 
good old days" before computers, I remember well entering the X's in the left end 
of the keyboard of a Monroe or Marchant calculator, entering the Y's in the right 
end, pushing a couple of buttons, and getting ×X, ×Y, ×X2 , ×Y2 , and 2×XY in 
the output register all in one fell swoop!  [That was quite an accomplishment 
then.] 
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4.   ɟ = cosine (ɗ), where ɗ is the angle between a vector for the X variable and a 
vector for the Y variable in the n-dimensional "person space" rather than the two-
dimensional "variable space".  [If you don't know anything about trigonometry or 
multi-dimensional space, that will mean absolutely nothing to you.] 
 
5.   If you really want a mathematical challenge, try using the formula in the 
following excerpt from an article I wrote about 25 years ago (in the Journal of 
Educational Statistics, 1979, volume 4, number 1, pages  41-58).  You'll probably 
have to read a lot of that article in order to figure out what a gsm is, what  all of 
those crazy symbols are, etc.; but as I said, it's a challenge! 
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